TY - JOUR
T1 - Mechanisms of Unrest and Eruption at Persistently Restless Volcanoes
T2 - Insights From the 2015 Eruption of Telica Volcano, Nicaragua
AU - Roman, Diana C.
AU - LaFemina, Peter C.
AU - Bussard, Rebecca
AU - Stephens, Kirsten
AU - Wauthier, Christelle
AU - Higgins, Machel
AU - Feineman, Maureen
AU - Arellano, Santiago
AU - de Moor, J. Maarten
AU - Avard, Geoffroy
AU - Cruz, Maria Martinez
AU - Burton, Mike
AU - Varnam, Matthew
AU - Saballos, Armando
AU - Ibarra, Martha
AU - Strauch, Wilfried
AU - Tenorio, Virginia
N1 - Publisher Copyright:
© 2019. American Geophysical Union. All Rights Reserved.
PY - 2019/8/1
Y1 - 2019/8/1
N2 - Many of Earth's volcanoes experience well-defined states of “quiescence” and “unrest,” with unrest occasionally culminating in eruption. Some volcanoes, however, experience an unusually protracted (i.e., decades-long) period of noneruptive unrest and are thus categorized as “persistently restless volcanoes” (PRVs). The processes that drive persistently restless volcanism are poorly understood, as our knowledge of PRVs is currently based on a small number of case studies. Here we examine multidisciplinary observations of the 2015 eruptive episode at Telica Volcano, Nicaragua, in the context of its long-term behavior. We suggest that the latter phases of the 2015 eruption were ultimately driven by destabilization of its shallow magma reservoir. Based on previous geodetic-seismic studies of Telica (Geirsson et al., 2014, https://doi.org/10.1016/j.jvolgeores.2013.11.009; Rodgers et al., 2013, https://doi.org/10.1016/j.jvolgeores.2013.08.010 and 2015, https://doi.org/10.1016/j.jvolgeores.2014.11.012) and on multiparameter observations at Telica over a 7-year period, we propose that three distinct states of unrest occur at Telica over decadal timescales: a stable open state involving steady conduit convection and two distinct “unstable” states that may lead to eruptions. In the “weak sealing” state, phreatic explosions result from steady conduit convection underlying a weak seal. In the “destabilized” state, destabilization of the top of the convecting magma in the conduit leads to rapid accumulation of high pressures leading to strong/impulsive phreatomagmatic explosions. Our observations and interpretations suggest that continuous seismic, ground-based deformation, gas emission, and thermal monitoring and interpretation of these data within a paradigm of sustained conduit convection modulated by episodes of sealing and destabilization of shallow magma reservoirs may allow robust forecasting of eruption potential, energy, and duration at Telica and similar PRVs worldwide.
AB - Many of Earth's volcanoes experience well-defined states of “quiescence” and “unrest,” with unrest occasionally culminating in eruption. Some volcanoes, however, experience an unusually protracted (i.e., decades-long) period of noneruptive unrest and are thus categorized as “persistently restless volcanoes” (PRVs). The processes that drive persistently restless volcanism are poorly understood, as our knowledge of PRVs is currently based on a small number of case studies. Here we examine multidisciplinary observations of the 2015 eruptive episode at Telica Volcano, Nicaragua, in the context of its long-term behavior. We suggest that the latter phases of the 2015 eruption were ultimately driven by destabilization of its shallow magma reservoir. Based on previous geodetic-seismic studies of Telica (Geirsson et al., 2014, https://doi.org/10.1016/j.jvolgeores.2013.11.009; Rodgers et al., 2013, https://doi.org/10.1016/j.jvolgeores.2013.08.010 and 2015, https://doi.org/10.1016/j.jvolgeores.2014.11.012) and on multiparameter observations at Telica over a 7-year period, we propose that three distinct states of unrest occur at Telica over decadal timescales: a stable open state involving steady conduit convection and two distinct “unstable” states that may lead to eruptions. In the “weak sealing” state, phreatic explosions result from steady conduit convection underlying a weak seal. In the “destabilized” state, destabilization of the top of the convecting magma in the conduit leads to rapid accumulation of high pressures leading to strong/impulsive phreatomagmatic explosions. Our observations and interpretations suggest that continuous seismic, ground-based deformation, gas emission, and thermal monitoring and interpretation of these data within a paradigm of sustained conduit convection modulated by episodes of sealing and destabilization of shallow magma reservoirs may allow robust forecasting of eruption potential, energy, and duration at Telica and similar PRVs worldwide.
UR - http://www.scopus.com/inward/record.url?scp=85071043636&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071043636&partnerID=8YFLogxK
U2 - 10.1029/2019GC008450
DO - 10.1029/2019GC008450
M3 - Article
AN - SCOPUS:85071043636
SN - 1525-2027
VL - 20
SP - 4162
EP - 4183
JO - Geochemistry, Geophysics, Geosystems
JF - Geochemistry, Geophysics, Geosystems
IS - 8
ER -