MEID: Mixture-of-Experts with Internal Distillation for Long-Tailed Video Recognition

Xinjie Li, Huijuan Xu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

The long-tailed video recognition problem is especially challenging, as videos tend to be long and untrimmed, and each video may contain multiple classes, causing frame-level class imbalance. The previous method tackles the long-tailed video recognition only through frame-level sampling for class re-balance without distinguishing the frame-level feature representation between head and tail classes. To improve the frame-level feature representation of tail classes, we modulate the frame-level features with an auxiliary distillation loss to reduce the distribution distance between head and tail classes. Moreover, we design a mixture-of-experts framework with two different expert designs, i.e., the first expert with an attention-based classification network handling the original long-tailed distribution, and the second expert dealing with the re-balanced distribution from class-balanced sampling. Notably, in the second expert, we specifically focus on the frames unsolved by the first expert by designing a complementary frame selection module, which inherits the attention weights from the first expert and selects frames with low attention weights, and we also enhance the motion feature representation for these selected frames. To highlight the multi-label challenge in long-tailed video recognition, we create two additional benchmarks based on Charades and CharadesEgo videos with the multi-label property, called CharadesLT and CharadesEgoLT. Extensive experiments are conducted on the existing long-tailed video benchmark VideoLT and the two new benchmarks to verify the effectiveness of our proposed method with state-of-the-art performance. The code and proposed benchmarks are released at https://github.com/VisionLanguageLab/MEID.

Original languageEnglish (US)
Title of host publicationAAAI-23 Technical Tracks 2
EditorsBrian Williams, Yiling Chen, Jennifer Neville
PublisherAAAI press
Pages1451-1459
Number of pages9
ISBN (Electronic)9781577358800
DOIs
StatePublished - Jun 27 2023
Event37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States
Duration: Feb 7 2023Feb 14 2023

Publication series

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Volume37

Conference

Conference37th AAAI Conference on Artificial Intelligence, AAAI 2023
Country/TerritoryUnited States
CityWashington
Period2/7/232/14/23

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'MEID: Mixture-of-Experts with Internal Distillation for Long-Tailed Video Recognition'. Together they form a unique fingerprint.

Cite this