TY - JOUR
T1 - Memory effects of domain structures during displacive phase transitions
T2 - A high-temperature TEM study of quartz and anorthite
AU - Xu, Hongwu
AU - Heaney, Peter J.
PY - 1997
Y1 - 1997
N2 - Memory effects associated with the Dauphiné twins in a quartz and the c-antiphase domains (c-APDs) in P1 anorthite have been investigated by in situ hot-stage transmission electron microscopy (TEM). In a set of kinetic experiments, specimens were cycled about their transition temperatures, and changes in the Dauphiné twin and c-APD positions were analyzed as a function of maximum annealing temperature and annealing time. The results indicate that Dauphiné twins are strongly pinned by extended defects, such as Brazil twin and grain boundaries, dislocations, and surfaces. However, the memory displayed by Dauphiné twin boundaries pinned by point defects degrades with higher annealing temperatures and longer annealing times. An Arrhenius analysis of this behavior yielded an average activation energy for point-defect diffusion of 68.6 kJ/mol. In contrast Io the Dauphiné twins of quartz, the c-APDs of anorthite did not appear to interact strongly with extended defects, and they exhibited a nearly perfect memory for all annealing times and temperatures tested. This extremely high fidelity is interpreted as evidence that the positions of c-APDs are fixed by localized Al-Si disorder, which remains unchanged when anorthite is heat treated at <1000°C.
AB - Memory effects associated with the Dauphiné twins in a quartz and the c-antiphase domains (c-APDs) in P1 anorthite have been investigated by in situ hot-stage transmission electron microscopy (TEM). In a set of kinetic experiments, specimens were cycled about their transition temperatures, and changes in the Dauphiné twin and c-APD positions were analyzed as a function of maximum annealing temperature and annealing time. The results indicate that Dauphiné twins are strongly pinned by extended defects, such as Brazil twin and grain boundaries, dislocations, and surfaces. However, the memory displayed by Dauphiné twin boundaries pinned by point defects degrades with higher annealing temperatures and longer annealing times. An Arrhenius analysis of this behavior yielded an average activation energy for point-defect diffusion of 68.6 kJ/mol. In contrast Io the Dauphiné twins of quartz, the c-APDs of anorthite did not appear to interact strongly with extended defects, and they exhibited a nearly perfect memory for all annealing times and temperatures tested. This extremely high fidelity is interpreted as evidence that the positions of c-APDs are fixed by localized Al-Si disorder, which remains unchanged when anorthite is heat treated at <1000°C.
UR - http://www.scopus.com/inward/record.url?scp=0030769520&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030769520&partnerID=8YFLogxK
U2 - 10.2138/am-1997-1-212
DO - 10.2138/am-1997-1-212
M3 - Article
AN - SCOPUS:0030769520
SN - 0003-004X
VL - 82
SP - 99
EP - 108
JO - American Mineralogist
JF - American Mineralogist
IS - 1-2
ER -