Memory Space Recycling

Jihyun Ryoo, Mahmut Taylan Kandemir, Mustafa Karakoy

Research output: Contribution to journalArticlepeer-review


Many program codes from different application domains process very large amounts of data, making their cache memory behavior critical for high performance. Most of the existing work targeting cache memory hierarchies focus on improving data access patterns, e.g., maximizing sequential accesses to program data structures via code and/or data layout restructuring strategies. Prior work has addressed this data locality optimization problem in the context of both single-core and multi-core systems. Another dimension of optimization, which can be as equally important/beneficial as improving data access pattern is to reduce the data volume (total number of addresses) accessed by the program code. Compared to data access pattern restructuring, this volume minimization problem has relatively taken much less attention. In this work, we focus on this volume minimization problem and address it in both single-core and multi-core execution scenarios. Specifically, we explore the idea of rewriting an application program code to reduce its "memory space footprint". The main idea behind this approach is to reuse/recycle, for a given data element, a memory location that has originally been assigned to another data element, provided that the lifetimes of these two data elements do not overlap with each other. A unique aspect is that it is "distance aware", i.e., in identifying the memory/cache locations to recycle it takes into account the physical distance between the location of the core and the memory/cache location to be recycled. We present a detailed experimental evaluation of our proposed memory space recycling strategy, using five different metrics: memory space consumption, network footprint, data access distance, cache miss rate, and execution time. The experimental results show that our proposed approach brings, respectively, 33.2%, 48.6%, 46.5%, 31.8%, and 27.9% average improvements in these metrics, in the case of single-threaded applications. With the multi-threaded versions of the same applications, the achieved improvements are 39.5%, 55.5%, 53.4%, 26.2%, and 22.2%, in the same order.

Original languageEnglish (US)
Article number14
JournalProceedings of the ACM on Measurement and Analysis of Computing Systems
Issue number1
StatePublished - Mar 2022

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)
  • Computer Networks and Communications
  • Hardware and Architecture
  • Safety, Risk, Reliability and Quality


Dive into the research topics of 'Memory Space Recycling'. Together they form a unique fingerprint.

Cite this