MEMS-Based Nanomechanics: Influence of MEMS Design on Test Temperature

B. Pant, S. Choi, E. K. Baumert, B. L. Allen, S. Graham, K. Gall, O. N. Pierron

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


Microelectromechanical system (MEMS) devices based on electro-thermal actuation have been used over the past few years to perform tensile tests on nanomaterials. However, previous MEMS designs only allowed small (e. g., <100 nm) total displacement range without a significant increase in temperature near the nanospecimens (<20°C), thereby limiting the design of the load sensor or the range of nanomaterials to test. Here we characterize the thermo-mechanical behavior of three MEMS devices, using optical displacement measurements, micro-Raman temperature measurements, and finite element modeling. We observe the increase in temperature near the nanospecimen gap per displacement of thermal actuator to linearly decrease with the distance between nanospecimen gap and thermal actuator. We also present a MEMS device that can provide up to 1.6 μm of total displacement with less than 10°C increase in temperature near the nanospecimens, more than one order of magnitude improvement with respect to previously published MEMS material testing setups. This MEMS device can be used for accurate, temperature-controlled tensile testing of nanocrystalline metallic nanobeams.

Original languageEnglish (US)
Pages (from-to)607-617
Number of pages11
JournalExperimental Mechanics
Issue number6
StatePublished - Jul 2012

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'MEMS-Based Nanomechanics: Influence of MEMS Design on Test Temperature'. Together they form a unique fingerprint.

Cite this