Menthol-induced cutaneous vasodilation is preserved in essential hypertensive men and women

Daniel H. Craighead, Lacy M. Alexander

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


BACKGROUND Menthol is a selective transient receptor potential melastatin 8 (TRPM8) channel agonist that induces cutaneous vasodilation in young, normotensive men and women through nitric oxide synthase (NOS)-, endothelium-derived hyperpolarizing factor (EDHF)-, and sensory nerve-mediated mechanisms. Microvascular dysfunction is present in essential hypertension and whether menthol induces vasodilation is men and women with essential hypertension is equivocal. METHODS Four intradermal microdialysis fibers were placed in the forearm of 9 essential hypertensive and 10 age-matched normotensive control subjects. Sites were pretreated with lactated Ringer’s (control), l-NAME (NOS inhibited), TEA (EDHF inhibited), and lidocaine (sensory nerve inhibited). The microdialysis fibers were then perfused with 7 increasing doses of menthol (0.1-500 mM). Red cell flux in response to menthol was measured with laser Doppler flowmetry. Data were normalized to mean arterial pressure and presented as a percentage of site-specific maximum vasodilation (%CVCmax). RESULTS At the control site, menthol caused vasodilation in both the normotensive and hypertensive groups (menthol doses 100, 250, and 500 mM; all P < 0.05 compared to baseline). There were no differences between groups (P = 0.58, main effect). There was no effect of either NOS or sensory nerve inhibition on menthol-induced vasodilation in the normotensive group; however, menthol-induced vasodilation was attenuated with NOS and sensory nerve inhibition in the hypertensive group. EDHF inhibition attenuated menthol-induced vasodilation in both groups. CONCLUSIONS Menthol-induced vasodilation has NO, EDHF, and sensory nerve components. Menthol-induced cutaneous vasodilation is preserved in hypertensive subjects. However, the hypertensive subjects exhibited a loss of redundant vasodilator systems.

Original languageEnglish (US)
Pages (from-to)1156-1162
Number of pages7
JournalAmerican journal of hypertension
Issue number12
StatePublished - Dec 1 2017

All Science Journal Classification (ASJC) codes

  • Internal Medicine


Dive into the research topics of 'Menthol-induced cutaneous vasodilation is preserved in essential hypertensive men and women'. Together they form a unique fingerprint.

Cite this