TY - JOUR
T1 - Merkel cell polyomavirus small tumor antigen activates matrix metallopeptidase-9 gene expression for cell migration and invasion
AU - Nwogu, Nnenna
AU - Ortiz, Luz E.
AU - Whitehouse, Adrian
AU - Kwun, Hyun Jin
N1 - Publisher Copyright:
Copyright © 2020 American Society for Microbiology.
PY - 2020/10
Y1 - 2020/10
N2 - Merkel cell polyomavirus (MCV) small T antigen (sT) is the main oncoprotein for the development of Merkel cell carcinoma (MCC). MCC is a rare, clinically aggressive neuroendocrine tumor of the skin with a high propensity for local, regional, and distant spread. The dysregulation of matrix metalloproteinase-9 (MMP-9) has been implicated in multiple essential roles in the development of various malignant tumor cell invasion and metastasis. Previously, MCV sT was shown to induce the migratory and invasive phenotype of MCC cells through the transcriptional activation of the sheddase molecule, ADAM 10 (A disintegrin and metalloprotease domain-containing protein 10). In this study, we show that MCV sT protein stimulates differential expression of epithelial-mesenchymal transition (EMT)-associated genes, including MMP-9 and Snail. This effect is dependent on the presence of the large T stabilization domain (LSD), which is known to be responsible for cell transformation through targeting of promiscuous E3 ligases, including FBW7, a known MMP-9 and Snail regulator. Chemical treatments of MMP-9 markedly inhibited MCV sT-induced cell migration and invasion. These results suggest that MCV sT contributes to the activation of MMP-9 as a result of FBW7 targeting and increases the invasive potential of cells, which can be used for targeted therapeutic intervention. IMPORTANCE Merkel cell carcinoma (MCC) is the most aggressive cutaneous tumor without clearly defined treatment. Although MCC has a high propensity for metastasis, little is known about the underlying mechanisms that drive MCC invasion and metastatic progression. MMP-9 has been shown to play a detrimental role in many metastatic human cancers, including melanoma and other nonmelanoma skin cancers. Our study shows that MCV sT-mediated MMP-9 activation is driven through the LSD, a known E3 ligase-targeting domain, in MCC. MMP-9 may serve as the biochemical culprit to target and develop a novel approach for the treatment of metastatic MCC.
AB - Merkel cell polyomavirus (MCV) small T antigen (sT) is the main oncoprotein for the development of Merkel cell carcinoma (MCC). MCC is a rare, clinically aggressive neuroendocrine tumor of the skin with a high propensity for local, regional, and distant spread. The dysregulation of matrix metalloproteinase-9 (MMP-9) has been implicated in multiple essential roles in the development of various malignant tumor cell invasion and metastasis. Previously, MCV sT was shown to induce the migratory and invasive phenotype of MCC cells through the transcriptional activation of the sheddase molecule, ADAM 10 (A disintegrin and metalloprotease domain-containing protein 10). In this study, we show that MCV sT protein stimulates differential expression of epithelial-mesenchymal transition (EMT)-associated genes, including MMP-9 and Snail. This effect is dependent on the presence of the large T stabilization domain (LSD), which is known to be responsible for cell transformation through targeting of promiscuous E3 ligases, including FBW7, a known MMP-9 and Snail regulator. Chemical treatments of MMP-9 markedly inhibited MCV sT-induced cell migration and invasion. These results suggest that MCV sT contributes to the activation of MMP-9 as a result of FBW7 targeting and increases the invasive potential of cells, which can be used for targeted therapeutic intervention. IMPORTANCE Merkel cell carcinoma (MCC) is the most aggressive cutaneous tumor without clearly defined treatment. Although MCC has a high propensity for metastasis, little is known about the underlying mechanisms that drive MCC invasion and metastatic progression. MMP-9 has been shown to play a detrimental role in many metastatic human cancers, including melanoma and other nonmelanoma skin cancers. Our study shows that MCV sT-mediated MMP-9 activation is driven through the LSD, a known E3 ligase-targeting domain, in MCC. MMP-9 may serve as the biochemical culprit to target and develop a novel approach for the treatment of metastatic MCC.
UR - http://www.scopus.com/inward/record.url?scp=85091127191&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091127191&partnerID=8YFLogxK
U2 - 10.1128/JVI.00786-20
DO - 10.1128/JVI.00786-20
M3 - Article
C2 - 32669331
AN - SCOPUS:85091127191
SN - 0022-538X
VL - 94
JO - Journal of virology
JF - Journal of virology
IS - 19
M1 - e00786
ER -