TY - JOUR
T1 - Mesoscale predictability of an extreme warm-season precipitation event
AU - Zhang, Fuqing
AU - Odins, Andrew M.
AU - Nielsen-Gammon, John W.
PY - 2006/4
Y1 - 2006/4
N2 - A mesoscale model is used to investigate the mesoscale predictability of an extreme precipitation event over central Texas on 29 June 2002 that lasted through 7 July 2002. Both the intrinsic and practical aspects of warm-season predictability, especially quantitative precipitation forecasts up to 36 h, were explored through experiments with various grid resolutions, initial and boundary conditions, physics parameterization schemes, and the addition of small-scale, small-amplitude random initial errors. It is found that the high-resolution convective- resolving simulations (with grid spacing down to 3.3 km) do not produce the best simulation or forecast. It was also found that both the realistic initial condition uncertainty and model errors can result in large forecast errors for this warm-season flooding event. Thus, practically, there is room to gain higher forecast accuracy through improving the initial analysis with better data assimilation echniques or enhanced observations, and through improving the forecast model with better- resolved or -parameterized physical processes. However, even if a perfect forecast model is used, small-scale, small-amplitude initial errors, such as those in the form of undetectable random noise, can grow rapidly and subsequently contaminate the short-term deterministic mesoscale forecast within 36 h. This rapid error growth is caused by moist convection. The limited deterministic predictability of such a heavy precipitation event, both practically and intrinsically, illustrates the need for probabilistic forecasts at the mesoscales.
AB - A mesoscale model is used to investigate the mesoscale predictability of an extreme precipitation event over central Texas on 29 June 2002 that lasted through 7 July 2002. Both the intrinsic and practical aspects of warm-season predictability, especially quantitative precipitation forecasts up to 36 h, were explored through experiments with various grid resolutions, initial and boundary conditions, physics parameterization schemes, and the addition of small-scale, small-amplitude random initial errors. It is found that the high-resolution convective- resolving simulations (with grid spacing down to 3.3 km) do not produce the best simulation or forecast. It was also found that both the realistic initial condition uncertainty and model errors can result in large forecast errors for this warm-season flooding event. Thus, practically, there is room to gain higher forecast accuracy through improving the initial analysis with better data assimilation echniques or enhanced observations, and through improving the forecast model with better- resolved or -parameterized physical processes. However, even if a perfect forecast model is used, small-scale, small-amplitude initial errors, such as those in the form of undetectable random noise, can grow rapidly and subsequently contaminate the short-term deterministic mesoscale forecast within 36 h. This rapid error growth is caused by moist convection. The limited deterministic predictability of such a heavy precipitation event, both practically and intrinsically, illustrates the need for probabilistic forecasts at the mesoscales.
UR - http://www.scopus.com/inward/record.url?scp=33646430318&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33646430318&partnerID=8YFLogxK
U2 - 10.1175/WAF909.1
DO - 10.1175/WAF909.1
M3 - Article
AN - SCOPUS:33646430318
SN - 0882-8156
VL - 21
SP - 149
EP - 166
JO - Weather and Forecasting
JF - Weather and Forecasting
IS - 2
ER -