Meta-analysis fine-mapping is often miscalibrated at single-variant resolution

Global Biobank Meta-analysis Initiative

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Meta-analysis is pervasively used to combine multiple genome-wide association studies (GWASs). Fine-mapping of meta-analysis studies is typically performed as in a single-cohort study. Here, we first demonstrate that heterogeneity (e.g., of sample size, phenotyping, imputation) hurts calibration of meta-analysis fine-mapping. We propose a summary statistics-based quality-control (QC) method, suspicious loci analysis of meta-analysis summary statistics (SLALOM), that identifies suspicious loci for meta-analysis fine-mapping by detecting outliers in association statistics. We validate SLALOM in simulations and the GWAS Catalog. Applying SLALOM to 14 meta-analyses from the Global Biobank Meta-analysis Initiative (GBMI), we find that 67% of loci show suspicious patterns that call into question fine-mapping accuracy. These predicted suspicious loci are significantly depleted for having nonsynonymous variants as lead variant (2.7×; Fisher's exact p = 7.3 × 10−4). We find limited evidence of fine-mapping improvement in the GBMI meta-analyses compared with individual biobanks. We urge extreme caution when interpreting fine-mapping results from meta-analysis of heterogeneous cohorts.

Original languageEnglish (US)
Article number100210
JournalCell Genomics
Volume2
Issue number12
DOIs
StatePublished - Dec 14 2022

All Science Journal Classification (ASJC) codes

  • Genetics
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)

Fingerprint

Dive into the research topics of 'Meta-analysis fine-mapping is often miscalibrated at single-variant resolution'. Together they form a unique fingerprint.

Cite this