TY - JOUR
T1 - Metal and semiconductor nanowire network thin films with hierarchical pore structures
AU - Wang, Donghai
AU - Jakobson, Hans Peter
AU - Kou, Rong
AU - Tang, Jing
AU - Fineman, Robert Z.
AU - Yu, Donghong
AU - Lu, Yunfeng
PY - 2006/9/5
Y1 - 2006/9/5
N2 - Metal and semiconductor nanowire thin films with hierarchical pore structure were electrodeposited using mesoporous silica (primary porogens) containing colloidal silica particles (secondary porogens) as templates. The pore size of the nanowire thin films was independently controlled by the wall thickness of the surfactant-templated mesopores and the sizes of the incorporated silica particles. The mesostructure of the nanowire thin films (e.g., hexagonal and cubic mesostructures) was controlled by judicious choice of surfactant. Furthermore, the shape of the secondary pores (e.g., sphere and rod shapes) can be controlled using secondary porogens with various shapes. Such hierarchical nanowire thin films provide novel platforms for photovoltaic, sensor, and other device applications. To demonstrate the advantage of such hierarchical porous networks, we fabricated photovoltaic devices by infiltrating the hole-conducting poly-(3-hexylthiophene) into the electron-conducting CdSe nanowire thin films with and without the secondary pore channels. The heterojunction solar cells consisting of a CdSe nanowire network with secondary pore structure and poly(3-hexylthiophene) showed improved performance with a short-circuit current of 2.4 mA/cm 2 under AM 1.5 solar illumination, confirming the advantages of such hierarchical pore structure for actual device applications.
AB - Metal and semiconductor nanowire thin films with hierarchical pore structure were electrodeposited using mesoporous silica (primary porogens) containing colloidal silica particles (secondary porogens) as templates. The pore size of the nanowire thin films was independently controlled by the wall thickness of the surfactant-templated mesopores and the sizes of the incorporated silica particles. The mesostructure of the nanowire thin films (e.g., hexagonal and cubic mesostructures) was controlled by judicious choice of surfactant. Furthermore, the shape of the secondary pores (e.g., sphere and rod shapes) can be controlled using secondary porogens with various shapes. Such hierarchical nanowire thin films provide novel platforms for photovoltaic, sensor, and other device applications. To demonstrate the advantage of such hierarchical porous networks, we fabricated photovoltaic devices by infiltrating the hole-conducting poly-(3-hexylthiophene) into the electron-conducting CdSe nanowire thin films with and without the secondary pore channels. The heterojunction solar cells consisting of a CdSe nanowire network with secondary pore structure and poly(3-hexylthiophene) showed improved performance with a short-circuit current of 2.4 mA/cm 2 under AM 1.5 solar illumination, confirming the advantages of such hierarchical pore structure for actual device applications.
UR - http://www.scopus.com/inward/record.url?scp=33748796866&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33748796866&partnerID=8YFLogxK
U2 - 10.1021/cm052216b
DO - 10.1021/cm052216b
M3 - Article
AN - SCOPUS:33748796866
SN - 0897-4756
VL - 18
SP - 4231
EP - 4237
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 18
ER -