Metal Organic Resin Derived Barium Titanate; II, Kinetics of BaTiO3Formation

Suresh Kumar, Gary L. Messing

Research output: Contribution to journalArticlepeer-review

39 Scopus citations


A physicochemical model has been developed for the kinetics of barium titanate formation from X‐ray‐amorphous, metal organic precursors by relating the changes in the physical structure of the precursor particles with the degree of transformation in isothermally heated powder samples. From electron microscopy and gas adsorption, it is evident that the precursor particles consist of 20‐to 60‐nm crystallites and < 10‐nm intraparticle pores. A Ba,Ti oxycarbonate phase forms on heating the Ba,Ti metal organic precursor, which subsequently decomposes to form BaTiO3 It is concluded that the formation of BaTiO3 follows the shrinking core model, and the overall transformation is rate‐controlled by the diffusion of CO2 through the nanometer‐size intraparticle pores.

Original languageEnglish (US)
Pages (from-to)2940-2948
Number of pages9
JournalJournal of the American Ceramic Society
Issue number11
StatePublished - Nov 1994

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Materials Chemistry


Dive into the research topics of 'Metal Organic Resin Derived Barium Titanate; II, Kinetics of BaTiO3Formation'. Together they form a unique fingerprint.

Cite this