TY - JOUR
T1 - Metal Organic Resin Derived Barium Titanate; II, Kinetics of BaTiO3Formation
AU - Kumar, Suresh
AU - Messing, Gary L.
PY - 1994/11
Y1 - 1994/11
N2 - A physicochemical model has been developed for the kinetics of barium titanate formation from X‐ray‐amorphous, metal organic precursors by relating the changes in the physical structure of the precursor particles with the degree of transformation in isothermally heated powder samples. From electron microscopy and gas adsorption, it is evident that the precursor particles consist of 20‐to 60‐nm crystallites and < 10‐nm intraparticle pores. A Ba,Ti oxycarbonate phase forms on heating the Ba,Ti metal organic precursor, which subsequently decomposes to form BaTiO3 It is concluded that the formation of BaTiO3 follows the shrinking core model, and the overall transformation is rate‐controlled by the diffusion of CO2 through the nanometer‐size intraparticle pores.
AB - A physicochemical model has been developed for the kinetics of barium titanate formation from X‐ray‐amorphous, metal organic precursors by relating the changes in the physical structure of the precursor particles with the degree of transformation in isothermally heated powder samples. From electron microscopy and gas adsorption, it is evident that the precursor particles consist of 20‐to 60‐nm crystallites and < 10‐nm intraparticle pores. A Ba,Ti oxycarbonate phase forms on heating the Ba,Ti metal organic precursor, which subsequently decomposes to form BaTiO3 It is concluded that the formation of BaTiO3 follows the shrinking core model, and the overall transformation is rate‐controlled by the diffusion of CO2 through the nanometer‐size intraparticle pores.
UR - http://www.scopus.com/inward/record.url?scp=0028546309&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028546309&partnerID=8YFLogxK
U2 - 10.1111/j.1151-2916.1994.tb04528.x
DO - 10.1111/j.1151-2916.1994.tb04528.x
M3 - Article
AN - SCOPUS:0028546309
SN - 0002-7820
VL - 77
SP - 2940
EP - 2948
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 11
ER -