Meteor Detection With a New Computer Vision Approach

Yanlin Li, Freddy Galindo, Julio Urbina, Qihou Zhou, Tai Yin Huang

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


A novel computer vision-based meteor head echo detection algorithm is developed to study meteor fluxes and their physical properties, including initial range, range coverage, and radial velocity. The proposed Algorithm for Head Echo Automatic Detection (AHEAD) comprises a feature extraction function and a Convolutional Neural Network (CNN). The former is tailored to identify meteor head echoes, and then a CNN is employed to remove false alarms. In the testing of meteor data collected with the Jicamarca 50 MHz incoherent scatter radar, the new algorithm detects over 180 meteors per minute at dawn, which is 2 to 10 times more sensitive than prior manual or algorithmic approaches, with a false alarm rate less than 1 percent. The present work lays the foundation of developing a fully automatic AI-meteor package that detects, analyzes, and distinguishes among many types of meteor echoes. Furthermore, although initially evaluated for meteor data collected with the Jicamarca VHF incoherent radar, the new algorithm is generic enough that can be applied to other facilities with minor modifications. The CNN removes up to 98 percent of false alarms according to the testing set. We also present and discuss the physical characteristics of meteors detected with AHEAD, including flux rate, initial range, line of sight velocity, Signal-to-Noise Ratio, and noise characteristics. Our results indicate that stronger meteor echoes are detected at a slightly lower altitude and lower radial velocity than other meteors.

Original languageEnglish (US)
Article numbere2022RS007515
JournalRadio Science
Issue number10
StatePublished - Oct 2022

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • General Earth and Planetary Sciences
  • Electrical and Electronic Engineering


Dive into the research topics of 'Meteor Detection With a New Computer Vision Approach'. Together they form a unique fingerprint.

Cite this