TY - JOUR
T1 - Micro-doppler radar to evaluate risk for musculoskeletal injury
T2 - Protocol for a case-control study with gold standard comparison
AU - Ardat, Bilal Abou Al
AU - Nyland, Jennifer
AU - Creath, Robert
AU - Murphy, Terrence
AU - Narayanan, Ram
AU - Onks, Cayce
N1 - Publisher Copyright:
© 2023 Abou Al Ardat et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/10
Y1 - 2023/10
N2 - Background Beyond causing significant morbidity and cost, musculoskeletal injuries (MSKI) are among the most common reasons for primary care visits. A validated injury risk assessment tool for MSKI is conspicuously absent from current care. While motion capture (MC) systems are the current gold standard for assessing human motion, their disadvantages include large size, non-portability, high cost, and limited spatial resolution. As an alternative we introduce the Micro Doppler Radar (MDR); in contrast with MC, it is small, portable, inexpensive, and has superior spatial resolution capabilities. While Phase 1 testing has confirmed that MDR can identify individuals at high risk for MSKI, Phase 2 testing is still needed. Our aims are to 1) Use MDR technology and MC to identify individuals at high-risk for MSKI 2) Evaluate whether MDR has diagnostic accuracy superior to MC 3) Develop MDR algorithms that enhance accuracy and enable automation. Methods and findings A case control study will compare the movement patterns of 125 ACL reconstruction patients to 125 healthy controls. This study was reviewed and approved by the Pennsylvania State University Human Research Protection Program (HRPP) on May 18, 2022, and the IRB approval number is STUDY00020118. The ACL group is used as a model for a “high risk” population as up to 24% will have a repeat surgery within 2 years. An 8-camera Motion Analysis MC system with Cortex 8 software to collect MC data. Components for the radar technology will be purchased, assembled, and packaged. A micro-doppler signature projection algorithm will determine correct classification of ACL versus healthy control. Our previously tested algorithm for processing the MDR data will be used to identify the two groups. Discrimination, sensitivity and specificity will be calculated to compare the accuracy of MDR to MC in identifying the two groups. Conclusions We describe the rationale and methodology of a case-control study using novel MDR technology to detect individuals at high-risk for MSKI. We expect this novel approach to exhibit superior accuracy than the current gold standard. Future translational studies will determine utility in the context of clinical primary care.
AB - Background Beyond causing significant morbidity and cost, musculoskeletal injuries (MSKI) are among the most common reasons for primary care visits. A validated injury risk assessment tool for MSKI is conspicuously absent from current care. While motion capture (MC) systems are the current gold standard for assessing human motion, their disadvantages include large size, non-portability, high cost, and limited spatial resolution. As an alternative we introduce the Micro Doppler Radar (MDR); in contrast with MC, it is small, portable, inexpensive, and has superior spatial resolution capabilities. While Phase 1 testing has confirmed that MDR can identify individuals at high risk for MSKI, Phase 2 testing is still needed. Our aims are to 1) Use MDR technology and MC to identify individuals at high-risk for MSKI 2) Evaluate whether MDR has diagnostic accuracy superior to MC 3) Develop MDR algorithms that enhance accuracy and enable automation. Methods and findings A case control study will compare the movement patterns of 125 ACL reconstruction patients to 125 healthy controls. This study was reviewed and approved by the Pennsylvania State University Human Research Protection Program (HRPP) on May 18, 2022, and the IRB approval number is STUDY00020118. The ACL group is used as a model for a “high risk” population as up to 24% will have a repeat surgery within 2 years. An 8-camera Motion Analysis MC system with Cortex 8 software to collect MC data. Components for the radar technology will be purchased, assembled, and packaged. A micro-doppler signature projection algorithm will determine correct classification of ACL versus healthy control. Our previously tested algorithm for processing the MDR data will be used to identify the two groups. Discrimination, sensitivity and specificity will be calculated to compare the accuracy of MDR to MC in identifying the two groups. Conclusions We describe the rationale and methodology of a case-control study using novel MDR technology to detect individuals at high-risk for MSKI. We expect this novel approach to exhibit superior accuracy than the current gold standard. Future translational studies will determine utility in the context of clinical primary care.
UR - http://www.scopus.com/inward/record.url?scp=85174333594&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85174333594&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0292675
DO - 10.1371/journal.pone.0292675
M3 - Article
C2 - 37815998
AN - SCOPUS:85174333594
SN - 1932-6203
VL - 18
JO - PloS one
JF - PloS one
IS - 10 October
M1 - e0292675
ER -