Micro-Level Interpretation of Exponential Random Graph Models with Application to Estuary Networks

Bruce A. Desmarais, Skyler J. Cranmer

Research output: Contribution to journalArticlepeer-review

77 Scopus citations


The exponential random graph model (ERGM) is an increasingly popular method for the statistical analysis of networks that can be used to flexibly analyze the processes by which policy actors organize into a network. Often times, interpretation of ERGM results is conducted at the network level, such that effects are related to overall frequencies of network structures (e.g., the number of closed triangles in a network). This limits the utility of the ERGM because there is often interest, particularly in political and policy sciences, in network dynamics at the actor or relationship levels. Micro-level interpretation of the ERGM has been employed in varied applications in sociology and statistics. We present a comprehensive framework for interpretation of the ERGM at all levels of analysis, which casts network formation as block-wise updating of a network. These blocks can represent, for example, each potential link, each dyad, the out- or in-going ties of each actor, or the entire network. We contrast this interpretive framework with the stochastic actor-based model (SABM) of network dynamics. We present the theoretical differences between the ERGM and the SABM and introduce an approach to comparing the models when theory is not sufficiently strong to make the selection a priori. The alternative models we discuss and the interpretation methods we propose are illustrated on previously published data on estuary policy and governance networks.

Original languageEnglish (US)
Pages (from-to)402-434
Number of pages33
JournalPolicy Studies Journal
Issue number3
StatePublished - Aug 2012

All Science Journal Classification (ASJC) codes

  • Sociology and Political Science
  • Public Administration
  • Management, Monitoring, Policy and Law


Dive into the research topics of 'Micro-Level Interpretation of Exponential Random Graph Models with Application to Estuary Networks'. Together they form a unique fingerprint.

Cite this