TY - JOUR
T1 - Microbial Autotrophy Recorded by Carbonate Dual Clumped Isotope Disequilibrium
AU - Ingalls, Miquela
AU - Leapaldt, Hanna C.
AU - Lloyd, Max K.
N1 - Publisher Copyright:
© 2024 The Author(s). Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
PY - 2024/6
Y1 - 2024/6
N2 - The proliferation of microbial carbon fixation is a key control on the evolution of the biosphere and global carbon cycle. Most records of these metabolisms in ancient rocks come from organic matter or fossils, which are not always preserved. Here, we present a potential proxy for microbial carbon fixation (autotrophy) based on the isotopic composition of carbonate minerals. Autotrophs influence carbonate chemistry in the cellular microenvironment by decreasing CO2 concentration and increasing the carbonate saturation state. This can induce rapid precipitation of carbonate minerals that are out of isotopic equilibrium with their environment. Recent work has identified disequilibrated dual clumped isotope compositions (∆47 and ∆48) in the skeletal fossils of marine calcifying organisms. Here we test whether the same is true of non-skeletal carbonate fabrics associated with microbial autotrophs in modern and Eocene lakes. We found that microbial carbonate formed via autotrophic metabolism recorded lower ∆47 and higher ∆48 values (−∆47/+∆48) than predicted for thermodynamic equilibrium mineral formation. Our findings are supported by models of dual clumped isotope kinetics in the DIC system, and disequilibrium in the oxygen isotope system. We hypothesize that the inverse trajectory away from the equilibrium line (+∆47/−∆48) should be recorded by carbonates formed in association with alkalinizing heterotrophs, such as sulfate reducers. If so, carbonate dual clumped isotopes could be a powerful tool to identify the proliferation and rate of heterotrophic and autotrophic metabolisms in the carbonate rock record on Earth and (perhaps) other planets.
AB - The proliferation of microbial carbon fixation is a key control on the evolution of the biosphere and global carbon cycle. Most records of these metabolisms in ancient rocks come from organic matter or fossils, which are not always preserved. Here, we present a potential proxy for microbial carbon fixation (autotrophy) based on the isotopic composition of carbonate minerals. Autotrophs influence carbonate chemistry in the cellular microenvironment by decreasing CO2 concentration and increasing the carbonate saturation state. This can induce rapid precipitation of carbonate minerals that are out of isotopic equilibrium with their environment. Recent work has identified disequilibrated dual clumped isotope compositions (∆47 and ∆48) in the skeletal fossils of marine calcifying organisms. Here we test whether the same is true of non-skeletal carbonate fabrics associated with microbial autotrophs in modern and Eocene lakes. We found that microbial carbonate formed via autotrophic metabolism recorded lower ∆47 and higher ∆48 values (−∆47/+∆48) than predicted for thermodynamic equilibrium mineral formation. Our findings are supported by models of dual clumped isotope kinetics in the DIC system, and disequilibrium in the oxygen isotope system. We hypothesize that the inverse trajectory away from the equilibrium line (+∆47/−∆48) should be recorded by carbonates formed in association with alkalinizing heterotrophs, such as sulfate reducers. If so, carbonate dual clumped isotopes could be a powerful tool to identify the proliferation and rate of heterotrophic and autotrophic metabolisms in the carbonate rock record on Earth and (perhaps) other planets.
UR - http://www.scopus.com/inward/record.url?scp=85196193227&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85196193227&partnerID=8YFLogxK
U2 - 10.1029/2024GC011590
DO - 10.1029/2024GC011590
M3 - Article
AN - SCOPUS:85196193227
SN - 1525-2027
VL - 25
JO - Geochemistry, Geophysics, Geosystems
JF - Geochemistry, Geophysics, Geosystems
IS - 6
M1 - e2024GC011590
ER -