TY - JOUR
T1 - Microbial diversity in sub-seafloor sediments from the Costa Rica margin
AU - Martino, Amanda
AU - Rhodes, Matthew E.
AU - León-Zayas, Rosa
AU - Valente, Isabella E.
AU - Biddle, Jennifer F.
AU - House, Christopher H.
N1 - Funding Information:
This work was funded by IODP 334 Post Expedition award T334A40, the Penn State Astrobiology Research Center (through the NASA Astrobiology Institute, cooperative agreement #NNA09DA76A), the Pennsylvania Space Grant Consortium (NNX10AK74H), and a postdoctoral fellowship (RLZ) and graduate student fellowship (AJM) from NSF-funded Center for Dark Energy Biosphere investigations.
Funding Information:
Funding: This work was funded by IODP 334 Post Expedition award T334A40, the Penn State Astrobiology Research Center (through the NASA Astrobiology Institute, cooperative agreement #NNA09DA76A), the Pennsylvania Space Grant Consortium (NNX10AK74H), and a postdoctoral fellowship (RLZ) and graduate student fellowship (AJM) from NSF-funded Center for Dark Energy Biosphere investigations.
Funding Information:
Acknowledgments: We thank all shipboard scientists on Expedition 334, especially geochemist Evan Solomon for providing refined pore water chemistry data. Illumina sequencing data for Site 1378 were made possible by the Deep Carbon Observatory’s Census of Deep Life, supported by the Alfred P. Sloan Foundation. This Illumina sequencing was performed at the Marine Biological Laboratory (Woods Hole, MA, USA) and we are grateful for the assistance of Mitch Sogin, Susan Huse, Joseph Vineis, Andrew Voorhis, Sharon Grim, and Hilary Morrison at the Marine Biological Laboratory. Illumina sequencing for Site 1379 was carried out by the lab of Stephan Schuster, and we are thankful for the assistance of Lynn Tomsho. Additionally, we thank Glenn Christman for metagenome assembly and bioinformatics assistance. This work is C-DEBI contribution 473.
Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/5
Y1 - 2019/5
N2 - The exploration of the deep biosphere continues to reveal a great diversity of microorganisms, many of which remain poorly understood. This study provides a first look at the microbial community composition of the Costa Rica Margin sub-seafloor from two sites on the upper plate of the subduction zone, between the Cocos and Caribbean plates. Despite being in close geographical proximity, with similar lithologies, both sites show distinctions in the relative abundance of the archaeal domain and major microbial phyla, assessed using a pair of universal primers and supported by the sequencing of six metagenomes. Elusimicrobia, Chloroflexi, Aerophobetes, Actinobacteria, Lokiarchaeota, and Atribacteria were dominant phyla at Site 1378, and Bathyarchaeota, Chloroflexi, Hadesarchaeota, Aerophobetes, Elusimicrobia, and Lokiarchaeota were dominant at Site 1379. Correlations of microbial taxa with geochemistry were examined and notable relationships were seen with ammonia, sulfate, and depth. With deep sediments, there is always a concern that drilling technologies impact analyses due to contamination of the sediments via drilling fluid. Here, we use analysis of the drilling fluid in conjunction with the sediment analysis, to assess the level of contamination and remove any problematic sequences. In the majority of samples, we find the level of drilling fluid contamination, negligible.
AB - The exploration of the deep biosphere continues to reveal a great diversity of microorganisms, many of which remain poorly understood. This study provides a first look at the microbial community composition of the Costa Rica Margin sub-seafloor from two sites on the upper plate of the subduction zone, between the Cocos and Caribbean plates. Despite being in close geographical proximity, with similar lithologies, both sites show distinctions in the relative abundance of the archaeal domain and major microbial phyla, assessed using a pair of universal primers and supported by the sequencing of six metagenomes. Elusimicrobia, Chloroflexi, Aerophobetes, Actinobacteria, Lokiarchaeota, and Atribacteria were dominant phyla at Site 1378, and Bathyarchaeota, Chloroflexi, Hadesarchaeota, Aerophobetes, Elusimicrobia, and Lokiarchaeota were dominant at Site 1379. Correlations of microbial taxa with geochemistry were examined and notable relationships were seen with ammonia, sulfate, and depth. With deep sediments, there is always a concern that drilling technologies impact analyses due to contamination of the sediments via drilling fluid. Here, we use analysis of the drilling fluid in conjunction with the sediment analysis, to assess the level of contamination and remove any problematic sequences. In the majority of samples, we find the level of drilling fluid contamination, negligible.
UR - http://www.scopus.com/inward/record.url?scp=85067461054&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85067461054&partnerID=8YFLogxK
U2 - 10.3390/geosciences9050218
DO - 10.3390/geosciences9050218
M3 - Article
AN - SCOPUS:85067461054
SN - 2076-3263
VL - 9
JO - Geosciences (Switzerland)
JF - Geosciences (Switzerland)
IS - 5
M1 - 218
ER -