Microkinetic Modeling of Surface Catalysis

Gerhard R. Wittreich, Konstantinos Alexopoulos, Dionisios G. Vlachos

Research output: Chapter in Book/Report/Conference proceedingChapter

18 Scopus citations

Abstract

Microkinetic modeling (MKM) breaks down a reaction mechanism into all known elementary steps making no a priori assumptions about dominant reaction paths, rate determining steps, and most abundant reactive intermediates. Instead this information emerges from the solution of the model. Aside from mechanistic understanding, MKM can be utilized to optimize reaction conditions and/or reactor configuration and provide guidelines for catalyst design. This chapter focuses on describing the basics of mean-field MKM. It also details how firstprinciples calculations or fast-screening methods can be used in conjunction with transition state theory and statistical mechanics to derive kinetic and thermodynamic parameters that abide to thermodynamic consistency constraints. Finally, the chapter covers analysis techniques that provide key insights into the reaction mechanism. We focus primarily on the ammonia decomposition chemistry as an illustrative example.

Original languageEnglish (US)
Title of host publicationHandbook of Materials Modeling
Subtitle of host publicationApplications: Current and Emerging Materials, Second Edition
PublisherSpringer International Publishing
Pages1377-1404
Number of pages28
ISBN (Electronic)9783319446806
ISBN (Print)9783319446790
DOIs
StatePublished - Jan 1 2020

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy
  • General Engineering
  • General Chemistry

Cite this