TY - JOUR
T1 - Microphysical and polarimetric radar modeling of hydrometeor refreezing
AU - Tobin, Dana M.
AU - Kumjian, Matthew R.
N1 - Publisher Copyright:
© 2021 American Meteorological Society.
PY - 2021/6
Y1 - 2021/6
N2 - Aunique polarimetric radar signature indicative of hydrometeor refreezing during ice pellet events has been documented in several recent studies, yet the underlying microphysical causes remain unknown. The signature is characterized by enhancements in differential reflectivity (ZDR), specific differential phase (KDP), and linear depolarization ratio (LDR), and a reduction in copolar correlation coefficient (rhv) within a layer of decreasing radar reflectivity factor at horizontal polarization (ZH). In previous studies, the leading hypothesis for the observed radar signature is the preferential refreezing of small drops. Here, a simplified, one-dimensional, explicit bin microphysics model is developed to simulate the refreezing of fully melted hydrometeors, and coupled with a polarimetric radar forward operator to quantify the impact of preferential refreezing on simulated radar signatures. The modeling results demonstrate that preferential refreezing is insufficient by itself to produce the observed signatures. In contrast, simulations considering an ice shell growing asymmetrically around a freezing particle (i.e., emulating a thicker ice shell on the bottom of a falling particle) produce realistic ZDR enhancements, and also closely replicate observed features in ZH, KDP, LDR, and rhv. Simulations that assume no increase in particle wobbling with freezing produce an even greater ZDR enhancement, but this comes at the expense of reducing the LDR enhancement. It is suggested that the polarimetric refreezing signature is instead strongly related to both the distribution of the unfrozen liquid portion within a freezing particle and the orientation of this liquid with respect to the horizontal.
AB - Aunique polarimetric radar signature indicative of hydrometeor refreezing during ice pellet events has been documented in several recent studies, yet the underlying microphysical causes remain unknown. The signature is characterized by enhancements in differential reflectivity (ZDR), specific differential phase (KDP), and linear depolarization ratio (LDR), and a reduction in copolar correlation coefficient (rhv) within a layer of decreasing radar reflectivity factor at horizontal polarization (ZH). In previous studies, the leading hypothesis for the observed radar signature is the preferential refreezing of small drops. Here, a simplified, one-dimensional, explicit bin microphysics model is developed to simulate the refreezing of fully melted hydrometeors, and coupled with a polarimetric radar forward operator to quantify the impact of preferential refreezing on simulated radar signatures. The modeling results demonstrate that preferential refreezing is insufficient by itself to produce the observed signatures. In contrast, simulations considering an ice shell growing asymmetrically around a freezing particle (i.e., emulating a thicker ice shell on the bottom of a falling particle) produce realistic ZDR enhancements, and also closely replicate observed features in ZH, KDP, LDR, and rhv. Simulations that assume no increase in particle wobbling with freezing produce an even greater ZDR enhancement, but this comes at the expense of reducing the LDR enhancement. It is suggested that the polarimetric refreezing signature is instead strongly related to both the distribution of the unfrozen liquid portion within a freezing particle and the orientation of this liquid with respect to the horizontal.
UR - http://www.scopus.com/inward/record.url?scp=85108781952&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108781952&partnerID=8YFLogxK
U2 - 10.1175/JAS-D-20-0314.1
DO - 10.1175/JAS-D-20-0314.1
M3 - Article
AN - SCOPUS:85108781952
SN - 0022-4928
VL - 76
SP - 1965
EP - 1981
JO - Journal of the Atmospheric Sciences
JF - Journal of the Atmospheric Sciences
IS - 6
ER -