TY - JOUR
T1 - MicroRNAs Dependent G-ELNs Based Intervention Improves Glucose and Fatty Acid Metabolism While Protecting Pancreatic β-Cells in Type 2 Diabetic Mice
AU - Bajaj, Geetika
AU - Choudhary, Diksha
AU - Singh, Vishal
AU - Priyadarshi, Nitesh
AU - Garg, Priyanka
AU - Mantri, Shrikant Subhash
AU - Rishi, Vikas
AU - Singhal, Nitin Kumar
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2025/1/29
Y1 - 2025/1/29
N2 - Metabolic disorders such as Type 2 diabetes mellitus (T2DM) imposes a significant global health burden. Plant-derived exosome like nanoparticles (P-ELNs) have emerged as a promising therapeutic alternate for various diseases. Present data demonstrates that treatment with Ginger-derived exosome like nanoparticles (G-ELNs) enhance insulin dependent glucose uptake, downregulate gluconeogenesis and oxidative stress in insulin resistant HepG2 cells. Furthermore, oral administration of G-ELNs in T2DM mice decreases fasting blood glucose levels and improves glucose tolerance as effectively as metformin. These improvements are attributed to the enhanced phosphorylation of Protein kinase B (Akt-2), the phosphatidylinositol 3-kinase at serine 474 which consequently leads to increase in hepatic insulin sensitivity, improvement in glucose homeostasis and decrease in ectopic fat deposition. Oral administration of G-ELNs also exerts protective effect on Streptozotocin (STZ)-induced pancreatic β-cells damage, contributing to systemic amelioration of T2DM. Further, as per computational tools, miRNAs present in G-ELNs modulate the phosphatidylinositol 3-kinase (PI3K)/Akt-2 pathway and exhibit strong interactions with various target mRNAs responsible for hepatic gluconeogenesis, ectopic fat deposition and oxidative stress. Furthermore, synthetic mimic of G-ELNs miRNA effectively downregulates its target mRNA in insulin resistant HepG2 cells. Overall, the results indicate that the miRNAs present in G-ELNs target hepatic metabolism thus, exerting therapeutic effects in T2DM.
AB - Metabolic disorders such as Type 2 diabetes mellitus (T2DM) imposes a significant global health burden. Plant-derived exosome like nanoparticles (P-ELNs) have emerged as a promising therapeutic alternate for various diseases. Present data demonstrates that treatment with Ginger-derived exosome like nanoparticles (G-ELNs) enhance insulin dependent glucose uptake, downregulate gluconeogenesis and oxidative stress in insulin resistant HepG2 cells. Furthermore, oral administration of G-ELNs in T2DM mice decreases fasting blood glucose levels and improves glucose tolerance as effectively as metformin. These improvements are attributed to the enhanced phosphorylation of Protein kinase B (Akt-2), the phosphatidylinositol 3-kinase at serine 474 which consequently leads to increase in hepatic insulin sensitivity, improvement in glucose homeostasis and decrease in ectopic fat deposition. Oral administration of G-ELNs also exerts protective effect on Streptozotocin (STZ)-induced pancreatic β-cells damage, contributing to systemic amelioration of T2DM. Further, as per computational tools, miRNAs present in G-ELNs modulate the phosphatidylinositol 3-kinase (PI3K)/Akt-2 pathway and exhibit strong interactions with various target mRNAs responsible for hepatic gluconeogenesis, ectopic fat deposition and oxidative stress. Furthermore, synthetic mimic of G-ELNs miRNA effectively downregulates its target mRNA in insulin resistant HepG2 cells. Overall, the results indicate that the miRNAs present in G-ELNs target hepatic metabolism thus, exerting therapeutic effects in T2DM.
UR - http://www.scopus.com/inward/record.url?scp=85211317999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85211317999&partnerID=8YFLogxK
U2 - 10.1002/smll.202409501
DO - 10.1002/smll.202409501
M3 - Article
C2 - 39648555
AN - SCOPUS:85211317999
SN - 1613-6810
VL - 21
JO - Small
JF - Small
IS - 4
M1 - 2409501
ER -