TY - JOUR
T1 - Microscopic Investigation of Chemoselectivity in Ag-Pt-Fe3O4 Heterotrimer Formation
T2 - Mechanistic Insights and Implications for Controlling High-Order Hybrid Nanoparticle Morphology
AU - Hodges, James M.
AU - Morse, James R.
AU - Williams, Mary Elizabeth
AU - Schaak, Raymond E.
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/12/16
Y1 - 2015/12/16
N2 - Three-component hybrid nanoparticle heterotrimers, which are important multifunctional constructs that underpin diverse applications, are commonly synthesized by growing a third domain off of a two-component heterodimer seed. However, because heterodimer seeds expose two distinct surfaces that often can both support nucleation and growth, selectively targeting one particular surface is critical for exclusively accessing a desired configuration. Understanding and controlling nucleation and growth therefore enables the rational formation of high-order hybrid nanoparticles. Here, we report an in-depth microscopic investigation that probes the chemoselective addition of Ag to Pt-Fe3O4 heterodimer seeds to form Ag-Pt-Fe3O4 heterotrimers. We find that the formation of the Ag-Pt-Fe3O4 heterotrimers initiates with indiscriminate Ag nucleation onto both the Pt and Fe3O4 surfaces of Pt-Fe3O4, followed by surface diffusion and coalescence of Ag onto the Pt surface to form the Ag-Pt-Fe3O4 product. Control experiments reveal that the size of the Ag domain of Ag-Pt-Fe3O4 correlates with the overall surface area of the Pt-Fe3O4 seeds, which is consistent with the coalescence of Ag through a surface-mediated process and can also be exploited to tune the size of the Ag domain. Additionally, we observe that small iron oxide islands on the Pt surface of the Pt-Fe3O4 seeds, deposited during the formation of Pt-Fe3O4, define the morphology of the Ag domain, which in turn influences its optical properties. These results provide unprecedented microscopic insights into the pathway by which Ag-Pt-Fe3O4 heterotrimer nanoparticles form and uncover new design guidelines for the synthesis of high-order hybrid nanoparticles with precisely targeted morphologies and properties.
AB - Three-component hybrid nanoparticle heterotrimers, which are important multifunctional constructs that underpin diverse applications, are commonly synthesized by growing a third domain off of a two-component heterodimer seed. However, because heterodimer seeds expose two distinct surfaces that often can both support nucleation and growth, selectively targeting one particular surface is critical for exclusively accessing a desired configuration. Understanding and controlling nucleation and growth therefore enables the rational formation of high-order hybrid nanoparticles. Here, we report an in-depth microscopic investigation that probes the chemoselective addition of Ag to Pt-Fe3O4 heterodimer seeds to form Ag-Pt-Fe3O4 heterotrimers. We find that the formation of the Ag-Pt-Fe3O4 heterotrimers initiates with indiscriminate Ag nucleation onto both the Pt and Fe3O4 surfaces of Pt-Fe3O4, followed by surface diffusion and coalescence of Ag onto the Pt surface to form the Ag-Pt-Fe3O4 product. Control experiments reveal that the size of the Ag domain of Ag-Pt-Fe3O4 correlates with the overall surface area of the Pt-Fe3O4 seeds, which is consistent with the coalescence of Ag through a surface-mediated process and can also be exploited to tune the size of the Ag domain. Additionally, we observe that small iron oxide islands on the Pt surface of the Pt-Fe3O4 seeds, deposited during the formation of Pt-Fe3O4, define the morphology of the Ag domain, which in turn influences its optical properties. These results provide unprecedented microscopic insights into the pathway by which Ag-Pt-Fe3O4 heterotrimer nanoparticles form and uncover new design guidelines for the synthesis of high-order hybrid nanoparticles with precisely targeted morphologies and properties.
UR - http://www.scopus.com/inward/record.url?scp=84950236033&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84950236033&partnerID=8YFLogxK
U2 - 10.1021/jacs.5b10254
DO - 10.1021/jacs.5b10254
M3 - Article
C2 - 26599998
AN - SCOPUS:84950236033
SN - 0002-7863
VL - 137
SP - 15493
EP - 15500
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 49
ER -