TY - JOUR
T1 - Microstructure, phase transition, and interfacial chemistry of Gd 2O 3/Si(111) grown by electron-beam physical vapor deposition
AU - Weng, Xiaojun
AU - Grave, Daniel A.
AU - Hughes, Zachary R.
AU - Wolfe, Douglas E.
AU - Robinson, Joshua A.
N1 - Funding Information:
This research was sponsored by the Defense Threat Reduction Agency (DTRA) under Contract No. DTRA01-03-D-0010-0022. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DTRA. The TEM work was performed at the Materials Characterization Lab, PA State University.
PY - 2012/7
Y1 - 2012/7
N2 - The effects of growth temperature, film thickness, and oxygen flux on the microstructure, phase transition, and interfacial chemistry of gadolinium oxide (Gd 2O 3) films grown on Si(111) substrates by electron-beam physical vapor deposition were investigated using a combination of transmission electron microscopy (TEM), electron diffraction, scanning TEM, x-ray energy dispersive spectrometry, and electron energy loss spectrometry. The authors find that a low growth temperature (250 °C) and a high oxygen flux (200 sccm) led to a small grain size and a high porosity of the Gd 2O 3 film. Lowering the oxygen flux to 50 sccm led to reduced film porosity, presumably due to the increased diffusion length of the Gd atoms on the surface. Increasing the growth temperature to 650 deg:C resulted in a film with large columnar grains and elongated pores at the grain boundaries. Thin films grown at 250 C consisted of cubic Gd 2O 3, but thermodynamically less stable monoclinic phase formed as the film thickness increased. Lowering the oxygen flux apparently further promoted the formation of the monoclinic phase. Furthermore, monoclinic phase dominated in the films grown at 650 °C. Such phase transitions may be related to the stress evolution of the films at different temperatures, thicknesses, and oxygen fluxes. Enhanced Gd 2O 3/Si interfacial reaction was observed as the growth temperature, film thickness, and oxygen flux increased. Moreover, oxygen was found to play a crucial role in the Gd 2O 3/Si interfacial reaction and the formation of Gd-Si-O interface layers, which proceeded by the reaction of excess oxygen with Si followed by the intermixing of SiO x and Gd 2O 3.
AB - The effects of growth temperature, film thickness, and oxygen flux on the microstructure, phase transition, and interfacial chemistry of gadolinium oxide (Gd 2O 3) films grown on Si(111) substrates by electron-beam physical vapor deposition were investigated using a combination of transmission electron microscopy (TEM), electron diffraction, scanning TEM, x-ray energy dispersive spectrometry, and electron energy loss spectrometry. The authors find that a low growth temperature (250 °C) and a high oxygen flux (200 sccm) led to a small grain size and a high porosity of the Gd 2O 3 film. Lowering the oxygen flux to 50 sccm led to reduced film porosity, presumably due to the increased diffusion length of the Gd atoms on the surface. Increasing the growth temperature to 650 deg:C resulted in a film with large columnar grains and elongated pores at the grain boundaries. Thin films grown at 250 C consisted of cubic Gd 2O 3, but thermodynamically less stable monoclinic phase formed as the film thickness increased. Lowering the oxygen flux apparently further promoted the formation of the monoclinic phase. Furthermore, monoclinic phase dominated in the films grown at 650 °C. Such phase transitions may be related to the stress evolution of the films at different temperatures, thicknesses, and oxygen fluxes. Enhanced Gd 2O 3/Si interfacial reaction was observed as the growth temperature, film thickness, and oxygen flux increased. Moreover, oxygen was found to play a crucial role in the Gd 2O 3/Si interfacial reaction and the formation of Gd-Si-O interface layers, which proceeded by the reaction of excess oxygen with Si followed by the intermixing of SiO x and Gd 2O 3.
UR - http://www.scopus.com/inward/record.url?scp=84863693358&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863693358&partnerID=8YFLogxK
U2 - 10.1116/1.4726266
DO - 10.1116/1.4726266
M3 - Article
AN - SCOPUS:84863693358
SN - 0734-2101
VL - 30
JO - Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
JF - Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
IS - 4
M1 - 041512
ER -