@inproceedings{c4d749b6550545d1af1c5751319dc63f,
title = "Microthermopiles integrated with fluidic channels as calorimetric MEMS biosensors",
abstract = "This paper presents the fabrication and preliminary performance characteristics of a calorimetric MEMS biosensor. The sensor consists of freestanding microthermopiles integrated with polymeric microfluidic channels. The fabricated microthermopiles on a freestanding nitride-oxide-nitride membrane have a responsivity of 1.8 V/W and a time constant of less than 100 ms. Continuous flow testing was performed with hot water a evaluate the performance of the sensors. Measurements of the heat of reaction from the oxidation of glucose catalysed by glucose oxidase enzyme were performed using an open channel configuration. These measurements indicate that the up to 1 mM (1 nmole) sensitivity can be achieved using the sensor in open channel configuration.",
author = "Yuyan Zhang and S. Tadigadapa",
note = "Publisher Copyright: {\textcopyright} 2003 IEEE.; 12th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2003 - Digest of Technical Papers ; Conference date: 08-06-2003 Through 12-06-2003",
year = "2003",
doi = "10.1109/SENSOR.2003.1216981",
language = "English (US)",
series = "TRANSDUCERS 2003 - 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Digest of Technical Papers",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1176--1179",
booktitle = "TRANSDUCERS 2003 - 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Digest of Technical Papers",
address = "United States",
}