Mineralogy controls on reactive transport of Marcellus Shale waters

Zhang Cai, Hang Wen, Sridhar Komarneni, Li Li

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Produced or flowback waters from Marcellus Shale gas extraction (MSWs) typically are highly saline and contain chemicals including trace metals, which pose significant concerns on water quality. The natural attenuation of MSW chemicals in groundwater is poorly understood due to the complex interactions between aquifer minerals and MSWs, limiting our capabilities to monitor and predict. Here we combine flow-through experiments and process-based reactive transport modeling to understand mechanisms and quantify the retention of MSW chemicals in a quartz (Qtz) column, a calcite-rich (Cal) column, and a clay-rich (Vrm, vermiculite) column. These columns were used to represent sand, carbonate, and clay-rich aquifers. Results show that the types and extent of water-rock interactions differ significantly across columns. Although it is generally known that clay-rich media retard chemicals and that quartz media minimize water-rock interactions, results here have revealed insights that differ from previous thoughts. We found that the reaction mechanisms are much more complex than merely sorption and mineral precipitation. In clay rich media, trace metals participate in both ion exchange and mineral precipitation. In fact, the majority of metals (~50–90%) is retained in the solid via mineral precipitation, which is surprising because we typically expect the dominance of sorption in clay-rich aquifers. In the Cal column, trace metals are retained not only through precipitation but also solid solution partitioning, leading to a total of 75–99% retention. Even in the Qtz column, trace metals are retained at unexpectedly high percentages (~20–70%) due to precipitation. The reactive transport model developed here quantitatively differentiates the relative importance of individual processes, and bridges a limited number of experiments to a wide range of natural conditions. This is particularly useful where relatively limited knowledge and data prevent the prediction of complex rock-contaminant interactions and natural attenuation.

Original languageEnglish (US)
Pages (from-to)1573-1582
Number of pages10
JournalScience of the Total Environment
StatePublished - Jul 15 2018

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution


Dive into the research topics of 'Mineralogy controls on reactive transport of Marcellus Shale waters'. Together they form a unique fingerprint.

Cite this