Minimalistic ice recrystallisation inhibitors based on phenylalanine

Matthew T. Warren, Iain Galpin, Muhammad Hasan, Steven A. Hindmarsh, John D. Padrnos, Charlotte Edwards-Gayle, Robert T. Mathers, Dave J. Adams, Gabriele C. Sosso, Matthew I. Gibson

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Ice recrystallisation inhibition (IRI) is typically associated with ice binding proteins, but polymers and other mimetics are emerging. Here we identify phenylalanine as a minimalistic, yet potent, small-molecule IRI capable of inhibiting ice growth at just 1 mg mL−1. Facial amphiphilicity is shown to be a crucial structural feature, with para-substituents enhancing (hydrophobic) or decreasing (hydrophilic) IRI activity. Both amino and acid groups were found to be essential. Solution-phase self-assembly of Phenylalanine was not observed, but the role of self-assembly at the ice/water interface could not be ruled out as a contributing factor.

Original languageEnglish (US)
JournalChemical Communications
DOIs
StateAccepted/In press - 2022

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • General Chemistry
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Minimalistic ice recrystallisation inhibitors based on phenylalanine'. Together they form a unique fingerprint.

Cite this