TY - JOUR
T1 - Minimally invasive or noninvasive cardiac output measurement
T2 - an update
AU - Sangkum, Lisa
AU - Liu, Geoffrey L.
AU - Yu, Ling
AU - Yan, Hong
AU - Kaye, Alan D.
AU - Liu, Henry
N1 - Publisher Copyright:
© 2016, Japanese Society of Anesthesiologists.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - Although cardiac output (CO) by pulmonary artery catheterization (PAC) has been an important guideline in clinical management for more than four decades, some studies have questioned the clinical efficacy of CO in certain patient populations. Further, the use of CO by PAC has been linked to numerous complications including dysrhythmia, infection, rupture of pulmonary artery, injury to adjacent arteries, embolization, pulmonary infarction, cardiac valvular damage, pericardial effusion, and intracardiac catheter knotting. The use of PAC has been steadily declining over the past two decades. Minimally invasive and noninvasive CO monitoring have been studied in the past two decades with some evidence of efficacy. Several different devices based on pulse contour analysis are available currently, including the uncalibrated FloTrac/Vigileo system and the calibrated PiCCO and LiDCO systems. The pressure-recording analytical method (PRAM) system requires only an arterial line and is commercially available as the MostCare system. Transesophageal echocardiography (TEE) can measure CO by non-Doppler- or Doppler-based methods. The partial CO2 rebreathing technique, another method to measure CO, is marketed by Novametrix Medical Systems as the NICO system. Thoracic electrical bioimpedance (TEB) and electric bioreactance (EB) are totally noninvasive CO monitoring. Nexfin HD and the newer ClearSight systems are examples of noninvasive CO monitoring devices currently being marketed by Edwards Lifesciences. The developing focus in CO monitoring devices appears to be shifting to tissue perfusion and microcirculatory flow and aimed more at markers that indicate the effectiveness of circulatory and microcirculatory resuscitations.
AB - Although cardiac output (CO) by pulmonary artery catheterization (PAC) has been an important guideline in clinical management for more than four decades, some studies have questioned the clinical efficacy of CO in certain patient populations. Further, the use of CO by PAC has been linked to numerous complications including dysrhythmia, infection, rupture of pulmonary artery, injury to adjacent arteries, embolization, pulmonary infarction, cardiac valvular damage, pericardial effusion, and intracardiac catheter knotting. The use of PAC has been steadily declining over the past two decades. Minimally invasive and noninvasive CO monitoring have been studied in the past two decades with some evidence of efficacy. Several different devices based on pulse contour analysis are available currently, including the uncalibrated FloTrac/Vigileo system and the calibrated PiCCO and LiDCO systems. The pressure-recording analytical method (PRAM) system requires only an arterial line and is commercially available as the MostCare system. Transesophageal echocardiography (TEE) can measure CO by non-Doppler- or Doppler-based methods. The partial CO2 rebreathing technique, another method to measure CO, is marketed by Novametrix Medical Systems as the NICO system. Thoracic electrical bioimpedance (TEB) and electric bioreactance (EB) are totally noninvasive CO monitoring. Nexfin HD and the newer ClearSight systems are examples of noninvasive CO monitoring devices currently being marketed by Edwards Lifesciences. The developing focus in CO monitoring devices appears to be shifting to tissue perfusion and microcirculatory flow and aimed more at markers that indicate the effectiveness of circulatory and microcirculatory resuscitations.
UR - http://www.scopus.com/inward/record.url?scp=84960086485&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84960086485&partnerID=8YFLogxK
U2 - 10.1007/s00540-016-2154-9
DO - 10.1007/s00540-016-2154-9
M3 - Review article
C2 - 26961819
AN - SCOPUS:84960086485
SN - 0913-8668
VL - 30
SP - 461
EP - 480
JO - Journal of Anesthesia
JF - Journal of Anesthesia
IS - 3
ER -