Minimizing Energy Use of Mixed-Fleet Public Transit for Fixed-Route Service

Amutheezan Sivagnanam, Afiya Ayman, Michael Wilbur, Philip Pugliese, Abhishek Dubey, Aron Laszka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Affordable public transit services are crucial for communities since they enable residents to access employment, education, and other services. Unfortunately, transit services that provide wide coverage tend to suffer from relatively low utilization, which results in high fuel usage per passenger per mile, leading to high operating costs and environmental impact. Electric vehicles (EVs) can reduce energy costs and environmental impact, but most public transit agencies have to employ them in combination with conventional, internal-combustion engine vehicles due to the high upfront costs of EVs. To make the best use of such a mixed fleet of vehicles, transit agencies need to optimize route assignments and charging schedules, which presents a challenging problem for large transit networks. We introduce a novel problem formulation to minimize fuel and electricity use by assigning vehicles to transit trips and scheduling them for charging, while serving an existing fixed-route transit schedule. We present an integer program for optimal assignment and scheduling, and we propose polynomial-time heuristic and meta-heuristic algorithms for larger networks. We evaluate our algorithms on the public transit service of Chattanooga, TN using operational data collected from transit vehicles. Our results show that the proposed algorithms are scalable and can reduce energy use and, hence, environmental impact and operational costs. For Chattanooga, the proposed algorithms can save $145,635 in energy costs and 576.7 metric tons of CO2 emission annually.

Original languageEnglish (US)
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages14930-14938
Number of pages9
ISBN (Electronic)9781713835974
StatePublished - 2021
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: Feb 2 2021Feb 9 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume17A

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/2/212/9/21

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Minimizing Energy Use of Mixed-Fleet Public Transit for Fixed-Route Service'. Together they form a unique fingerprint.

Cite this