Minimum message length inference of secondary structure from protein coordinate data

Arun S. Konagurthu, Arthur M. Lesk, Lloyd Allison

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Motivation: Secondary structure underpins the folding pattern and architecture of most proteins. Accurate assignment of the secondary structure elements is therefore an important problem. Although many approximate solutions of the secondary structure assignment problem exist, the statement of the problem has resisted a consistent and mathematically rigorous definition. A variety of comparative studies have highlighted major disagreements in the way the available methods define and assign secondary structure to coordinate data. Results: We report a new method to infer secondary structure based on the Bayesian method of minimum message length inference. It treats assignments of secondary structure as hypotheses that explain the given coordinate data. The method seeks to maximize the joint probability of a hypothesis and the data. There is a natural null hypothesis and any assignment that cannot better it is unacceptable. We developed a program SST based on this approach and compared it with popular programs, such as DSSP and STRIDE among others. Our evaluation suggests that SST gives reliable assignments even on low-resolution structures.

Original languageEnglish (US)
Article numberbts223
Pages (from-to)i97-i105
JournalBioinformatics
Volume28
Issue number12
DOIs
StatePublished - Jun 2012

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Minimum message length inference of secondary structure from protein coordinate data'. Together they form a unique fingerprint.

Cite this