TY - GEN
T1 - Mining a search engine's corpus without a query pool
AU - Zhang, Mingyang
AU - Zhang, Nan
AU - Das, Gautam
PY - 2013
Y1 - 2013
N2 - Many websites (e.g., WedMD.com, CNN.com) provide keyword search interfaces over a large corpus of documents. Meanwhile, many third parties (e.g., investors, analysts) are interested in learning big-picture analytical information over such a document corpus, but have no direct way of accessing it other than using the highly restrictive web search interface. In this paper, we study how to enable third-party data analytics over a search engine's corpus without the cooperation of its owner - specifically, by issuing a small number of search queries through the web interface. Almost all existing techniques require a pre-constructed query pool - i.e., a small yet comprehensive collection of queries which, if all issued through the search interface, can recall almost all documents in the corpus. The problem with this requirement is that a "good" query pool can only be constructed by someone with very specific knowledge (e.g., size, topic, special terms used, etc.) of the corpus, essentially leading to a chicken-and-egg problem. In this paper, we develop QG-SAMPLER and QG-ESTIMATOR, the first practical pool-free techniques for sampling and aggregate (e.g., SUM, COUNT, AVG) estimation over a search engine's corpus, respectively. Extensive real-world experiments show that our algorithms perform on-par with the state-of-the-art pool-based techniques equipped with a carefully tailored query pool, and significantly outperforms the latter when the query pool is a mismatch.
AB - Many websites (e.g., WedMD.com, CNN.com) provide keyword search interfaces over a large corpus of documents. Meanwhile, many third parties (e.g., investors, analysts) are interested in learning big-picture analytical information over such a document corpus, but have no direct way of accessing it other than using the highly restrictive web search interface. In this paper, we study how to enable third-party data analytics over a search engine's corpus without the cooperation of its owner - specifically, by issuing a small number of search queries through the web interface. Almost all existing techniques require a pre-constructed query pool - i.e., a small yet comprehensive collection of queries which, if all issued through the search interface, can recall almost all documents in the corpus. The problem with this requirement is that a "good" query pool can only be constructed by someone with very specific knowledge (e.g., size, topic, special terms used, etc.) of the corpus, essentially leading to a chicken-and-egg problem. In this paper, we develop QG-SAMPLER and QG-ESTIMATOR, the first practical pool-free techniques for sampling and aggregate (e.g., SUM, COUNT, AVG) estimation over a search engine's corpus, respectively. Extensive real-world experiments show that our algorithms perform on-par with the state-of-the-art pool-based techniques equipped with a carefully tailored query pool, and significantly outperforms the latter when the query pool is a mismatch.
UR - http://www.scopus.com/inward/record.url?scp=84889560374&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84889560374&partnerID=8YFLogxK
U2 - 10.1145/2505515.2505748
DO - 10.1145/2505515.2505748
M3 - Conference contribution
AN - SCOPUS:84889560374
SN - 9781450322638
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 29
EP - 38
BT - CIKM 2013 - Proceedings of the 22nd ACM International Conference on Information and Knowledge Management
T2 - 22nd ACM International Conference on Information and Knowledge Management, CIKM 2013
Y2 - 27 October 2013 through 1 November 2013
ER -