TY - JOUR
T1 - Mining health app data to find more and less successful weight loss subgroups
AU - Serrano, Katrina J.
AU - Yu, Mandi
AU - Coa, Kisha I.
AU - Collins, Linda M.
AU - Atienza, Audie A.
PY - 2016/6
Y1 - 2016/6
N2 - Background: More than half of all smartphone app downloads involve weight, diet, and exercise. If successful, these lifestyle apps may have far-reaching effects for disease prevention and health cost-savings, but few researchers have analyzed data from these apps. Objective: The purposes of this study were to analyze data from a commercial health app (Lose It!) in order to identify successful weight loss subgroups via exploratory analyses and to verify the stability of the results. Methods: Cross-sectional, de-identified data from Lose It! were analyzed. This dataset (n=12,427,196) was randomly split into 24 subsamples, and this study used 3 subsamples (combined n=972,687). Classification and regression tree methods were used to explore groupings of weight loss with one subsample, with descriptive analyses to examine other group characteristics. Data mining validation methods were conducted with 2 additional subsamples. Results: In subsample 1, 14.96% of users lost 5% or more of their starting body weight. Classification and regression tree analysis identified 3 distinct subgroups: "the occasional users" had the lowest proportion (4.87%) of individuals who successfully lost weight; "the basic users" had 37.61% weight loss success; and "the power users" achieved the highest percentage of weight loss success at 72.70%. Behavioral factors delineated the subgroups, though app-related behavioral characteristics further distinguished them. Results were replicated in further analyses with separate subsamples. Conclusions: This study demonstrates that distinct subgroups can be identified in "messy" commercial app data and the identified subgroups can be replicated in independent samples. Behavioral factors and use of custom app features characterized the subgroups. Targeting and tailoring information to particular subgroups could enhance weight loss success. Future studies should replicate data mining analyses to increase methodology rigor.
AB - Background: More than half of all smartphone app downloads involve weight, diet, and exercise. If successful, these lifestyle apps may have far-reaching effects for disease prevention and health cost-savings, but few researchers have analyzed data from these apps. Objective: The purposes of this study were to analyze data from a commercial health app (Lose It!) in order to identify successful weight loss subgroups via exploratory analyses and to verify the stability of the results. Methods: Cross-sectional, de-identified data from Lose It! were analyzed. This dataset (n=12,427,196) was randomly split into 24 subsamples, and this study used 3 subsamples (combined n=972,687). Classification and regression tree methods were used to explore groupings of weight loss with one subsample, with descriptive analyses to examine other group characteristics. Data mining validation methods were conducted with 2 additional subsamples. Results: In subsample 1, 14.96% of users lost 5% or more of their starting body weight. Classification and regression tree analysis identified 3 distinct subgroups: "the occasional users" had the lowest proportion (4.87%) of individuals who successfully lost weight; "the basic users" had 37.61% weight loss success; and "the power users" achieved the highest percentage of weight loss success at 72.70%. Behavioral factors delineated the subgroups, though app-related behavioral characteristics further distinguished them. Results were replicated in further analyses with separate subsamples. Conclusions: This study demonstrates that distinct subgroups can be identified in "messy" commercial app data and the identified subgroups can be replicated in independent samples. Behavioral factors and use of custom app features characterized the subgroups. Targeting and tailoring information to particular subgroups could enhance weight loss success. Future studies should replicate data mining analyses to increase methodology rigor.
UR - http://www.scopus.com/inward/record.url?scp=84977527075&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84977527075&partnerID=8YFLogxK
U2 - 10.2196/jmir.5473
DO - 10.2196/jmir.5473
M3 - Article
C2 - 27301853
AN - SCOPUS:84977527075
SN - 1439-4456
VL - 18
JO - Journal of medical Internet research
JF - Journal of medical Internet research
IS - 6
M1 - e154
ER -