Mitigating Heavy Ion Irradiation-Induced Degradation in p-type SnO Thin-Film Transistors at Room Temperature

Nahid Sultan Al-Mamun, Md Abu Jafar Rasel, Douglas E. Wolfe, Aman Haque, Ryan Schoell, Khalid Hattar, Seung Ho Ryu, Seong Keun Kim

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The study investigates the mitigation of radiation damage on p-type SnO thin-film transistors (TFTs) with a fast, room-temperature annealing process. Atomic layer deposition is utilized to fabricate bottom-gate TFTs of high-quality p-type SnO layers. After 2.8 MeV Au4+ irradiation at a fluence level of 5.2 × 1012 ions cm−2, the output drain current and on/off current ratio (Ion/Ioff) decrease by more than one order of magnitude, field-effect mobility (μFE) reduces more than four times, and subthreshold swing (SS) increases more than four times along with a negative shift in threshold voltage. The observed degradation is attributed to increased surface roughness and defect density, as confirmed by scanning electron microscopy (SEM), high-resolution micro-Raman, and transmission electron microscopy (TEM) with geometric phase analysis (GPA). A technique is demonstrated to recover the device performance at room temperature and in less than a minute, using the electron wind force (EWF) obtained from low-duty-cycle high-density pulsed current. At a pulsed current density of 4.0 × 105 A cm−2, approximately four times increase in Ion/Ioff is observed, 41% increase in μFE, and 20% decrease in the SS of the irradiated TFTs, suggesting effectiveness of the new annealing technique.

Original languageEnglish (US)
Article number2300392
JournalPhysica Status Solidi (A) Applications and Materials Science
Volume220
Issue number19
DOIs
StatePublished - Oct 2023

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Mitigating Heavy Ion Irradiation-Induced Degradation in p-type SnO Thin-Film Transistors at Room Temperature'. Together they form a unique fingerprint.

Cite this