TY - JOUR
T1 - Mitigating the effects of particle background on the Athena Wide Field Imager
AU - Miller, Eric D.
AU - Grant, Catherine E.
AU - Bautz, Marshall W.
AU - Molendi, Silvano
AU - Kraft, Ralph
AU - Nulsen, Paul
AU - Bulbul, Esra
AU - Allen, Steven
AU - Burrows, David N.
AU - Eraerds, Tanja
AU - Fioretti, Valentina
AU - Gastaldello, Fabio
AU - Hall, David
AU - Hubbard, Michael W.J.
AU - Keelan, Jonathan
AU - Meidinger, Norbert
AU - Perinati, Emanuele
AU - Rau, Arne
AU - Wilkins, Dan
N1 - Publisher Copyright:
© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
PY - 2022/1/1
Y1 - 2022/1/1
N2 - The Wide Field Imager (WFI) flying on Athena will usher in the next era of studying the hot and energetic Universe. Among Athena's ambitious science programs are observations of faint, diffuse sources limited by statistical and systematic uncertainty in the background produced by high-energy cosmic ray particles. These particles produce easily identified "cosmic-ray tracks"along with less easily identified signals produced by secondary photons or x-rays generated by particle interactions with the instrument. Such secondaries produce identical signals to the x-rays focused by the optics and cannot be filtered without also eliminating these precious photons. As part of a larger effort to estimate the level of unrejected background and mitigate its effects, we here present results from a study of background-reduction techniques that exploit the spatial correlation between cosmic-ray particle tracks and secondary events. We use Geant4 simulations to generate a realistic particle background signal, sort this into simulated WFI frames, and process those frames in a similar way to the expected flight and ground software to produce a realistic WFI observation containing only particle background. The technique under study, self-anti-coincidence (SAC), then selectively filters regions of the detector around particle tracks, turning the WFI into its own anti-coincidence detector. We show that SAC is effective at improving the systematic uncertainty for observations of faint, diffuse sources, but at the cost of statistical uncertainty due to a reduction in signal. If sufficient pixel pulse-height information is telemetered to the ground for each frame, then this technique can be applied selectively based on the science goals, providing flexibility without affecting the data quality for other science. The results presented here are relevant for any future silicon-based pixelated x-ray imaging detector and could allow the WFI and similar instruments to probe to truly faint x-ray surface brightness.
AB - The Wide Field Imager (WFI) flying on Athena will usher in the next era of studying the hot and energetic Universe. Among Athena's ambitious science programs are observations of faint, diffuse sources limited by statistical and systematic uncertainty in the background produced by high-energy cosmic ray particles. These particles produce easily identified "cosmic-ray tracks"along with less easily identified signals produced by secondary photons or x-rays generated by particle interactions with the instrument. Such secondaries produce identical signals to the x-rays focused by the optics and cannot be filtered without also eliminating these precious photons. As part of a larger effort to estimate the level of unrejected background and mitigate its effects, we here present results from a study of background-reduction techniques that exploit the spatial correlation between cosmic-ray particle tracks and secondary events. We use Geant4 simulations to generate a realistic particle background signal, sort this into simulated WFI frames, and process those frames in a similar way to the expected flight and ground software to produce a realistic WFI observation containing only particle background. The technique under study, self-anti-coincidence (SAC), then selectively filters regions of the detector around particle tracks, turning the WFI into its own anti-coincidence detector. We show that SAC is effective at improving the systematic uncertainty for observations of faint, diffuse sources, but at the cost of statistical uncertainty due to a reduction in signal. If sufficient pixel pulse-height information is telemetered to the ground for each frame, then this technique can be applied selectively based on the science goals, providing flexibility without affecting the data quality for other science. The results presented here are relevant for any future silicon-based pixelated x-ray imaging detector and could allow the WFI and similar instruments to probe to truly faint x-ray surface brightness.
UR - http://www.scopus.com/inward/record.url?scp=85128324294&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85128324294&partnerID=8YFLogxK
U2 - 10.1117/1.JATIS.8.1.018001
DO - 10.1117/1.JATIS.8.1.018001
M3 - Article
AN - SCOPUS:85128324294
SN - 2329-4124
VL - 8
JO - Journal of Astronomical Telescopes, Instruments, and Systems
JF - Journal of Astronomical Telescopes, Instruments, and Systems
IS - 1
M1 - 018001
ER -