TY - JOUR
T1 - Mitochondrial complex i defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients
T2 - Protection by antioxidants
AU - He, Yuan
AU - Leung, Kar Wah
AU - Zhang, Yue Hong
AU - Duan, Shan
AU - Zhong, Xiu Feng
AU - Jiang, Ru Zhang
AU - Peng, Zhan
AU - Tombran-Tink, Joyce
AU - Ge, Jian
PY - 2008/4
Y1 - 2008/4
N2 - Purpose. There is growing evidence that oxidative stress contributes to the progression of primary open-angle glaucoma (POAG), a leading cause of irreversible blindness worldwide. The authors provide evidence that mitochondrial dysfunction is a possible mechanism for the loss of trabecular meshwork (TM) cells in persons with POAG. Methods. TM from patients with POAG (GTM) and age-matched subjects without disease (NTM) were obtained by standard surgical trabeculectomy. Primary TM cultures were treated with one of the following mitochondrial respiratory chain inhibitors: rotenone (ROT, complex I inhibitor), thenoyl-trifluoroacetone (TTFA, complex II inhibitor), myxothiazol or antimycin A (MYX, AM-complex III inhibitors); mitochondrial permeability transition (MPT) inhibitor cyclosporine A (CsA); and antioxidants vitamin E (Vit E) or N-acetylcysteine (NAC). Mitochondrial function was determined by changes in mito-chondrial membrane potential (δψm) and adenosine triphosphate (ATP) production with the fluorescent probes 5,5′6,6′ tetrachloro-1,1′ 3,3′-tetraethylbenzimid azolocarbocyanine iodide (JC-1) and a luciferin/luciferase-based ATP assay, respectively. Reactive oxygen species (ROS) level, determined by H 2-DCF-DA, and cell death' measured by lactate dehydrogenase activity and Annexin V-FITC labeling, were also examined. Results. GTM cells have higher endogenous ROS levels, lower ATP levels, and decreased Aψm and they are more sensitive to mitochondrial complex I inhibition than their normal counterparts. ROT induces a further increase in ROS production, the release of cytochrome c and decreases in ATP level and δψm in GTM cells, eventually leading to apoptosis. Complex II and III inhibition had little effect on the cells. Antioxidants protect against ROT-induced death by inhibiting ROS generation and cytochrome c release. Conclusions. The authors propose that a mitochondrial complex I defect is associated with the degeneration of TM cells in patients with POAG, and antioxidants and MPT inhibitors can reduce the progression of this condition.
AB - Purpose. There is growing evidence that oxidative stress contributes to the progression of primary open-angle glaucoma (POAG), a leading cause of irreversible blindness worldwide. The authors provide evidence that mitochondrial dysfunction is a possible mechanism for the loss of trabecular meshwork (TM) cells in persons with POAG. Methods. TM from patients with POAG (GTM) and age-matched subjects without disease (NTM) were obtained by standard surgical trabeculectomy. Primary TM cultures were treated with one of the following mitochondrial respiratory chain inhibitors: rotenone (ROT, complex I inhibitor), thenoyl-trifluoroacetone (TTFA, complex II inhibitor), myxothiazol or antimycin A (MYX, AM-complex III inhibitors); mitochondrial permeability transition (MPT) inhibitor cyclosporine A (CsA); and antioxidants vitamin E (Vit E) or N-acetylcysteine (NAC). Mitochondrial function was determined by changes in mito-chondrial membrane potential (δψm) and adenosine triphosphate (ATP) production with the fluorescent probes 5,5′6,6′ tetrachloro-1,1′ 3,3′-tetraethylbenzimid azolocarbocyanine iodide (JC-1) and a luciferin/luciferase-based ATP assay, respectively. Reactive oxygen species (ROS) level, determined by H 2-DCF-DA, and cell death' measured by lactate dehydrogenase activity and Annexin V-FITC labeling, were also examined. Results. GTM cells have higher endogenous ROS levels, lower ATP levels, and decreased Aψm and they are more sensitive to mitochondrial complex I inhibition than their normal counterparts. ROT induces a further increase in ROS production, the release of cytochrome c and decreases in ATP level and δψm in GTM cells, eventually leading to apoptosis. Complex II and III inhibition had little effect on the cells. Antioxidants protect against ROT-induced death by inhibiting ROS generation and cytochrome c release. Conclusions. The authors propose that a mitochondrial complex I defect is associated with the degeneration of TM cells in patients with POAG, and antioxidants and MPT inhibitors can reduce the progression of this condition.
UR - http://www.scopus.com/inward/record.url?scp=45549087104&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=45549087104&partnerID=8YFLogxK
U2 - 10.1167/iovs.07-1361
DO - 10.1167/iovs.07-1361
M3 - Article
C2 - 18385062
AN - SCOPUS:45549087104
SN - 0146-0404
VL - 49
SP - 1447
EP - 1458
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
IS - 4
ER -