TY - JOUR
T1 - Mitochondrial superoxide dismutase has a protumorigenic role in ovarian clear cell carcinoma
AU - Hemachandra, L. P.Madhubhani P.
AU - Shin, Dong Hui
AU - Dier, Usawadee
AU - Iuliano, James N.
AU - Engelberth, Sarah A.
AU - Uusitalo, Larissa M.
AU - Murphy, Susan K.
AU - Hempel, Nadine
N1 - Publisher Copyright:
© 2015 American Association for Cancer Research.
PY - 2015/11/15
Y1 - 2015/11/15
N2 - Epithelial ovarian cancer (EOC) is the fourth leading cause of death due to cancer in women and comprises distinct histologic subtypes, which vary widely in their genetic profiles and tissues of origin. It is therefore imperative to understand the etiology of these distinct diseases. Ovarian clear cell carcinoma (OCCC), a very aggressive subtype, comprises >10% of EOCs. In the present study, we show that mitochondrial superoxide dismutase (Sod2) is highly expressed in OCCC compared with other EOC subtypes. Sod2 is an antioxidant enzyme that converts highly reactive superoxide (O2•-) to hydrogen peroxide (H2O2) and oxygen (O2), and our data demonstrate that Sod2 is protumorigenic and prometastatic in OCCC. Inhibiting Sod2 expression reduces OCCC ES-2 cell tumor growth and metastasis in a chorioallantoic membrane (CAM) model. Similarly, cell proliferation, migration, spheroid attachment and outgrowth on collagen, and Akt phosphorylation are significantly decreased with reduced expression of Sod2. Mechanistically, we show that Sod2 has a dual function in supporting OCCC tumorigenicity and metastatic spread. First, Sod2 maintains highly functional mitochondria, by scavenging O2•-, to support the high metabolic activity of OCCC. Second, Sod2 alters the steady-state ROS balance to drive H2O2-mediated migration. While this higher steady-state H2O2 drives prometastatic behavior, it also presents a doubled-edged sword for OCCC, as it pushed the intracellular H2O2 threshold to enable more rapid killing by exogenous sources of H2O2. Understanding the complex interaction of antioxidants and ROS may provide novel therapeutic strategies to pursue for the treatment of this histologic EOC subtype.
AB - Epithelial ovarian cancer (EOC) is the fourth leading cause of death due to cancer in women and comprises distinct histologic subtypes, which vary widely in their genetic profiles and tissues of origin. It is therefore imperative to understand the etiology of these distinct diseases. Ovarian clear cell carcinoma (OCCC), a very aggressive subtype, comprises >10% of EOCs. In the present study, we show that mitochondrial superoxide dismutase (Sod2) is highly expressed in OCCC compared with other EOC subtypes. Sod2 is an antioxidant enzyme that converts highly reactive superoxide (O2•-) to hydrogen peroxide (H2O2) and oxygen (O2), and our data demonstrate that Sod2 is protumorigenic and prometastatic in OCCC. Inhibiting Sod2 expression reduces OCCC ES-2 cell tumor growth and metastasis in a chorioallantoic membrane (CAM) model. Similarly, cell proliferation, migration, spheroid attachment and outgrowth on collagen, and Akt phosphorylation are significantly decreased with reduced expression of Sod2. Mechanistically, we show that Sod2 has a dual function in supporting OCCC tumorigenicity and metastatic spread. First, Sod2 maintains highly functional mitochondria, by scavenging O2•-, to support the high metabolic activity of OCCC. Second, Sod2 alters the steady-state ROS balance to drive H2O2-mediated migration. While this higher steady-state H2O2 drives prometastatic behavior, it also presents a doubled-edged sword for OCCC, as it pushed the intracellular H2O2 threshold to enable more rapid killing by exogenous sources of H2O2. Understanding the complex interaction of antioxidants and ROS may provide novel therapeutic strategies to pursue for the treatment of this histologic EOC subtype.
UR - http://www.scopus.com/inward/record.url?scp=84955313859&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84955313859&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-14-3799
DO - 10.1158/0008-5472.CAN-14-3799
M3 - Article
C2 - 26359457
AN - SCOPUS:84955313859
SN - 0008-5472
VL - 75
SP - 4973
EP - 4984
JO - Cancer Research
JF - Cancer Research
IS - 22
ER -