MIXED-INTEGER PROGRAMMING MODEL FOR FIXTURE LAYOUT OPTIMIZATION

Quazi A. Sayeed, Edward C. de Meter

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Workpiece deformation during machining is a significant source of machined feature geometric error. This paper presents a linear, mixed integer programming model for determining the optimal locations of locator buttons, supports, and their opposing clamps for minimizing the affect of static workpiece deformation on machined feature geometric error. This model operates on discretized candidate regions as opposed to continuous candidate regions. In addition it utilizes a condensed FEA model of the workpiece in order to minimize model size and computation expense. This model has two advantages over existing nonlinear programming (NLP) formulations. The first is its ability to solve problems in which fixture elements can be placed over multiple regions. The second is that a global optimal solution to this model can be obtained using commercially available software.

Original languageEnglish (US)
Title of host publicationManufacturing Science and Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages885-899
Number of pages15
ISBN (Electronic)9780791816066
DOIs
StatePublished - 1998
EventASME 1998 International Mechanical Engineering Congress and Exposition, IMECE 1998 - Anaheim, United States
Duration: Nov 15 1998Nov 20 1998

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume1998-R

Conference

ConferenceASME 1998 International Mechanical Engineering Congress and Exposition, IMECE 1998
Country/TerritoryUnited States
CityAnaheim
Period11/15/9811/20/98

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'MIXED-INTEGER PROGRAMMING MODEL FOR FIXTURE LAYOUT OPTIMIZATION'. Together they form a unique fingerprint.

Cite this