TY - GEN
T1 - Model prediction for deposition height during a direct metal deposition process
AU - Li, Jianyi
AU - Wang, Qian
AU - Michaleris, Panagiotis
AU - Reutzel, Edward W.
N1 - Publisher Copyright:
© 2017 American Automatic Control Council (AACC).
PY - 2017/6/29
Y1 - 2017/6/29
N2 - There has been increasing demand for the development of lumped-parameter models that can be used for real-time control design and optimization for laser-based additive manufacturing (AM) processes. Our prior work developed a physics-based multivariable model of melt-pool geometry and temperature dynamics for a single-bead deposition in a directed energy deposition process and validated the model using experimental data on deposition of single-bead Ti-6AL-4V (or Inconel®718) tracks on an Optomec® laser engineering net shaping (LENS) system. In this paper, we extend such model for melt-pool geometry on a single-bead single-layer deposition to a multi-bead multi-layer deposition and use the developed model on melt-pool height dynamics to predict part height of three-dimensional builds. Specifically, the extended model incorporates temperature history during the built process, which is computed using temperature field generated from super-positioning of Rosenthal's solution of point heat sources, with one heat source corresponding to one bead built before. The proposed model for part height prediction is then validated using a single-bead thin wall structure built with Ti-6AL-4V using an Optomec® LENS MR-7 system. The model prediction shows good agreement with measurement of part height with less than 10% error rate.
AB - There has been increasing demand for the development of lumped-parameter models that can be used for real-time control design and optimization for laser-based additive manufacturing (AM) processes. Our prior work developed a physics-based multivariable model of melt-pool geometry and temperature dynamics for a single-bead deposition in a directed energy deposition process and validated the model using experimental data on deposition of single-bead Ti-6AL-4V (or Inconel®718) tracks on an Optomec® laser engineering net shaping (LENS) system. In this paper, we extend such model for melt-pool geometry on a single-bead single-layer deposition to a multi-bead multi-layer deposition and use the developed model on melt-pool height dynamics to predict part height of three-dimensional builds. Specifically, the extended model incorporates temperature history during the built process, which is computed using temperature field generated from super-positioning of Rosenthal's solution of point heat sources, with one heat source corresponding to one bead built before. The proposed model for part height prediction is then validated using a single-bead thin wall structure built with Ti-6AL-4V using an Optomec® LENS MR-7 system. The model prediction shows good agreement with measurement of part height with less than 10% error rate.
UR - http://www.scopus.com/inward/record.url?scp=85026315308&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026315308&partnerID=8YFLogxK
U2 - 10.23919/ACC.2017.7963277
DO - 10.23919/ACC.2017.7963277
M3 - Conference contribution
AN - SCOPUS:85026315308
T3 - Proceedings of the American Control Conference
SP - 2188
EP - 2194
BT - 2017 American Control Conference, ACC 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 American Control Conference, ACC 2017
Y2 - 24 May 2017 through 26 May 2017
ER -