TY - GEN
T1 - Modeling and analysis of a CNG residential refueling system
AU - Bang, Hyo Joon
AU - Stockar, Stephanie
AU - Muratori, Matteo
AU - Rizzoni, Giorgio
N1 - Publisher Copyright:
© 2014 by ASME.
PY - 2014
Y1 - 2014
N2 - Natural gas has recently been proposed as an alternative fuel for transportation in the United States. Refueling infrastructure is the major technological barrier to the market penetration of passenger compressed natural gas (CNG) vehicles. Currently, there is about one natural gas refueling station every 150 gasoline pumps. Nevertheless, natural gas is widely available in American houses, and thus distributed residential refueling is seen as a viable solution. Generally, residential CNG refueling systems use compressors driven by electric motors. With a potential increase in the number of residential natural gas refueling systems over the next few years, the additional load that this system will introduce on the electric power infrastructure can be significant. In this paper, a system dynamic model of a residential refueling system has been developed and validated against data available in the literature. Ultimately, the model will allow for exploring the impact of residential refueling of CNG vehicles on the electric power infrastructure.
AB - Natural gas has recently been proposed as an alternative fuel for transportation in the United States. Refueling infrastructure is the major technological barrier to the market penetration of passenger compressed natural gas (CNG) vehicles. Currently, there is about one natural gas refueling station every 150 gasoline pumps. Nevertheless, natural gas is widely available in American houses, and thus distributed residential refueling is seen as a viable solution. Generally, residential CNG refueling systems use compressors driven by electric motors. With a potential increase in the number of residential natural gas refueling systems over the next few years, the additional load that this system will introduce on the electric power infrastructure can be significant. In this paper, a system dynamic model of a residential refueling system has been developed and validated against data available in the literature. Ultimately, the model will allow for exploring the impact of residential refueling of CNG vehicles on the electric power infrastructure.
UR - http://www.scopus.com/inward/record.url?scp=84929249189&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84929249189&partnerID=8YFLogxK
U2 - 10.1115/DSCC2014-6160
DO - 10.1115/DSCC2014-6160
M3 - Conference contribution
AN - SCOPUS:84929249189
T3 - ASME 2014 Dynamic Systems and Control Conference, DSCC 2014
BT - Industrial Applications; Modeling for Oil and Gas, Control and Validation, Estimation, and Control of Automotive Systems; Multi-Agent and Networked Systems; Control System Design; Physical Human-Robot Interaction; Rehabilitation Robotics; Sensing and Actuation for Control; Biomedical Systems; Time Delay Systems and Stability; Unmanned Ground and Surface Robotics; Vehicle Motion Controls; Vibration Analysis and Isolation; Vibration and Control for Energy Harvesting; Wind Energy
PB - American Society of Mechanical Engineers
T2 - ASME 2014 Dynamic Systems and Control Conference, DSCC 2014
Y2 - 22 October 2014 through 24 October 2014
ER -