Modeling and analysis of power distribution networks for gigabit applications

Jinwoo Choi, Sung Hwan Min, Joong Ho Kim, Madhavan Swaminathan, Wendemagegnehu Beyene, Xingchao Yuan

Research output: Contribution to journalArticlepeer-review

37 Scopus citations


As the operating frequency of digital systems increases and voltage swing decreases, it becomes very important to characterize and analyze power distribution networks (PDNs) accurately. This paper presents the modeling, simulation, and characterization of the PDN in a high-speed printed circuit board (PCB) designed for chip-to-chip communication at a data rate of 3.2 Gbps. The test board consists of transmitter and receiver chips wirebonded onto plastic ball grid array (PBGA) packages on a PCB. In this paper, a hybrid method has been applied for analysis which consists of the Transmission Matrix Method (TMM) in the frequency domain and Macromodeling method in the time domain. As an initial step, power/ground planes have been modeled using TMM. Then, the macromodel of the power/ground planes has been generated at the desired ports using macromodeling. Finally, the macromodel of the planes, transmission lines, and nonlinear drivers have been simulated in standard SPICE-based circuit simulators for computing power supply noise. In addition to noise computation, the self and transfer impedances of power/ground planes have been computed and the effect of decoupling capacitors on power supply noise has been analyzed. The methods discussed have been validated using hardware measurements.

Original languageEnglish (US)
Pages (from-to)299-313
Number of pages15
JournalIEEE Transactions on Mobile Computing
Issue number4
StatePublished - Oct 2003

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Networks and Communications
  • Electrical and Electronic Engineering


Dive into the research topics of 'Modeling and analysis of power distribution networks for gigabit applications'. Together they form a unique fingerprint.

Cite this