TY - GEN
T1 - Modeling dynamic competition on crowdfunding markets
AU - Lin, Yusan
AU - Yin, Peifeng
AU - Lee, Wang Chien
N1 - Publisher Copyright:
© 2018 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC BY 4.0 License.
PY - 2018/4/10
Y1 - 2018/4/10
N2 - The often fierce competition on crowdfunding markets can significantly affect project success. While various factors have been considered in predicting the success of crowdfunding projects, to the best knowledge of the authors, the phenomenon of competition has not been investigated. In this paper, we study the competition on crowdfunding markets through data analysis, and propose a probabilistic generative model, Dynamic Market Competition (DMC) model, to capture the competitiveness of projects in crowdfunding. Through an empirical evaluation using the pledging history of past crowdfunding projects, our approach has shown to capture the competitiveness of projects very well, and significantly outperforms several baseline approaches in predicting the daily collected funds of crowdfunding projects, reducing errors by 31.73% to 45.14%. In addition, our analyses on the correlations between project competitiveness, project design factors, and project success indicate that highly competitive projects, while being winners under various setting of project design factors, are particularly impressive with high pledging goals and high price rewards, comparing to medium and low competitive projects. Finally, the competitiveness of projects learned by DMC is shown to be very useful in applications of predicting final success and days taken to hit pledging goal, reaching 85% accuracy and error of less than 7 days, respectively, with limited information at early pledging stage.
AB - The often fierce competition on crowdfunding markets can significantly affect project success. While various factors have been considered in predicting the success of crowdfunding projects, to the best knowledge of the authors, the phenomenon of competition has not been investigated. In this paper, we study the competition on crowdfunding markets through data analysis, and propose a probabilistic generative model, Dynamic Market Competition (DMC) model, to capture the competitiveness of projects in crowdfunding. Through an empirical evaluation using the pledging history of past crowdfunding projects, our approach has shown to capture the competitiveness of projects very well, and significantly outperforms several baseline approaches in predicting the daily collected funds of crowdfunding projects, reducing errors by 31.73% to 45.14%. In addition, our analyses on the correlations between project competitiveness, project design factors, and project success indicate that highly competitive projects, while being winners under various setting of project design factors, are particularly impressive with high pledging goals and high price rewards, comparing to medium and low competitive projects. Finally, the competitiveness of projects learned by DMC is shown to be very useful in applications of predicting final success and days taken to hit pledging goal, reaching 85% accuracy and error of less than 7 days, respectively, with limited information at early pledging stage.
UR - http://www.scopus.com/inward/record.url?scp=85066887767&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85066887767&partnerID=8YFLogxK
U2 - 10.1145/3178876.3186170
DO - 10.1145/3178876.3186170
M3 - Conference contribution
AN - SCOPUS:85066887767
T3 - The Web Conference 2018 - Proceedings of the World Wide Web Conference, WWW 2018
SP - 1815
EP - 1824
BT - The Web Conference 2018 - Proceedings of the World Wide Web Conference, WWW 2018
PB - Association for Computing Machinery, Inc
T2 - 27th International World Wide Web, WWW 2018
Y2 - 23 April 2018 through 27 April 2018
ER -