Modeling for controller design on a steel floor system

Linda Morley Hanagan, Christopher H. Raebel, Eric Russell Marsh

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Lightweight steel floors sometimes possess levels of vibration, caused by pedestrian movement, found to be objectionable to the occupants. Traditional measures to reduce the motion have generally provided only marginal improvements or great disruption of the occupied space. More recently, active control, using an electro-magnetic proof-mass actuator, has been implemented to combat this problem. To design such a system, an accurate model of the floor system and the associated control system dynamics are necessary. This paper presents a generalized analytical model where parameters can be derived for specific floors, sensors, and actuators. With such a model, controller gains and actuator/sensor locations can be determined by any number of methods. An actual in-place floor is modeled, using experimental modal analysis, to illustrate the implementation of the model in predicting controller effectiveness. Particular attention is focused on the procedures used in defining the actual system parameters.

Original languageEnglish (US)
Pages (from-to)1341-1347
Number of pages7
JournalProceedings of the International Modal Analysis Conference - IMAC
Volume2
StatePublished - Jan 1 2000

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Modeling for controller design on a steel floor system'. Together they form a unique fingerprint.

Cite this