Abstract
This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equation in the confined flow. These models include both intra-group and inter-group bubble interactions.
Original language | English (US) |
---|---|
Pages (from-to) | 3-26 |
Number of pages | 24 |
Journal | Nuclear Engineering and Design |
Volume | 230 |
Issue number | 1-3 |
DOIs | |
State | Published - May 2004 |
Event | 11th International Conference on Nuclear Energy - Tokyo, Japan Duration: Apr 20 2003 → Apr 23 2003 |
All Science Journal Classification (ASJC) codes
- Mechanical Engineering
- Nuclear and High Energy Physics
- Safety, Risk, Reliability and Quality
- Waste Management and Disposal
- General Materials Science
- Nuclear Energy and Engineering