TY - GEN
T1 - Modeling of carbon and nitrogen gaseous emissions from cattle manure compost windrows
AU - Bonifacio, Henry F.
AU - Rotz, C. Alan
AU - Richard, Tom L.
PY - 2016
Y1 - 2016
N2 - Windrow composting of cattle manure is a significant source of gaseous emissions that include ammonia and the greenhouse gases of carbon dioxide, methane, and nitrous oxide. A process-based model was developed to simulate different carbon (C) and nitrogen (N) processes, such as mineralization, immobilization, volatilization, etc., occurring during composting, and their effects on and interactions with environmental conditions within the windrow. Comprehensive measurement data from a published independent cattle manure composting study were used in refining and assessing the model. Out of 15 measured parameters available for model evaluation, six were also used in refining model constants. Simulation results indicate that the model performed reasonably in predicting environmental conditions (e.g., moisture), C and N balance within, and gaseous emissions from static (i.e., no turning) and turned windrows. At the end of 99 days of composting, predicted C (50%) and N (31%) losses, mainly as gaseous emissions, for the static windrow compared well with measured losses (45% and 19%, respectively) - the discrepancy observed for N loss was likely due to non-simulation of the finished compost cover that was included on the experimental windrow. The model performed better in simulating the turned windrow, with predicted C (78%) and N (55%) losses very close to those measured (77% and 57%, respectively). The performance of the model was further assessed using another published independent study on a turned windrow, with predicted C (43%) and N (40%) losses comparable to measured losses (53% and 42%, respectively). The process-based compost model is incorporated in a version of the Integrated Farm System Model (IFSM), a whole-farm simulation model used to evaluate the performance, environmental impact, and economics of crop, dairy, and beef production systems. The new component will enable whole-farm evaluation of the impacts of implementing manure composting strategies.
AB - Windrow composting of cattle manure is a significant source of gaseous emissions that include ammonia and the greenhouse gases of carbon dioxide, methane, and nitrous oxide. A process-based model was developed to simulate different carbon (C) and nitrogen (N) processes, such as mineralization, immobilization, volatilization, etc., occurring during composting, and their effects on and interactions with environmental conditions within the windrow. Comprehensive measurement data from a published independent cattle manure composting study were used in refining and assessing the model. Out of 15 measured parameters available for model evaluation, six were also used in refining model constants. Simulation results indicate that the model performed reasonably in predicting environmental conditions (e.g., moisture), C and N balance within, and gaseous emissions from static (i.e., no turning) and turned windrows. At the end of 99 days of composting, predicted C (50%) and N (31%) losses, mainly as gaseous emissions, for the static windrow compared well with measured losses (45% and 19%, respectively) - the discrepancy observed for N loss was likely due to non-simulation of the finished compost cover that was included on the experimental windrow. The model performed better in simulating the turned windrow, with predicted C (78%) and N (55%) losses very close to those measured (77% and 57%, respectively). The performance of the model was further assessed using another published independent study on a turned windrow, with predicted C (43%) and N (40%) losses comparable to measured losses (53% and 42%, respectively). The process-based compost model is incorporated in a version of the Integrated Farm System Model (IFSM), a whole-farm simulation model used to evaluate the performance, environmental impact, and economics of crop, dairy, and beef production systems. The new component will enable whole-farm evaluation of the impacts of implementing manure composting strategies.
UR - http://www.scopus.com/inward/record.url?scp=85009062542&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009062542&partnerID=8YFLogxK
U2 - 10.13031/aim.20162459669
DO - 10.13031/aim.20162459669
M3 - Conference contribution
AN - SCOPUS:85009062542
T3 - 2016 American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2016
BT - 2016 American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2016
PB - American Society of Agricultural and Biological Engineers
T2 - 2016 ASABE Annual International Meeting
Y2 - 17 July 2016 through 20 July 2016
ER -