Modeling of cube array roughness: Rans, les, and dns

Samuel Altland, Haosen H.A. Xu, Xiang I.A. Yang, Robert Kunz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Flow over arrays of cubes is an extensively studied model problem for rough wall turbulent boundary layers. While considerable research has been performed in computationally investigating these topologies using DNS and LES, the ability of sublayer-resolved RANS to predict the bulk flow phenomena of these systems is relatively unexplored, especially at low and high packing densities. Here, RANS simulations are conducted on six different packing densities of cubes in aligned and staggered configurations. The packing densities investigated span from what would classically be defined as isolated, up to those in the dtype roughness regime, filling in the gap in the present literature. Three different sublayer-resolved turbulence closure models were tested for each case; a low Reynolds number k-e model, the Menter k-w SST model, and a full Reynolds stress model. Comparisons of the velocity fields, secondary flow features, and drag coefficients are made between the RANS results and existing LES and DNS results. There is a significant degree of variability in the performance of the various RANS models across all comparison metrics. However, the Reynolds stress model demonstrated the best accuracy in terms of the mean velocity profile as well as drag partition across the range of packing densities.

Original languageEnglish (US)
Title of host publicationFluid Mechanics; Micro and Nano Fluid Dynamics; Multiphase Flow
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791885307
DOIs
StatePublished - 2021
EventASME 2021 Fluids Engineering Division Summer Meeting, FEDSM 2021 - Virtual, Online
Duration: Aug 10 2021Aug 12 2021

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume3
ISSN (Print)0888-8116

Conference

ConferenceASME 2021 Fluids Engineering Division Summer Meeting, FEDSM 2021
CityVirtual, Online
Period8/10/218/12/21

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Modeling of cube array roughness: Rans, les, and dns'. Together they form a unique fingerprint.

Cite this