Modeling sulfur dioxide capture in a pulverized coal combustor

Rajesh B. Nair, Savas Yavuzkurt

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The formation and capture of sulfur dioxide in a pulverized coal combustor is investigated. A two-dimensional, steady, axisymmetric code, PCGC-2 (Pulverized Coal Gasification and Combustion - 2 Dimensional) originally developed at Brigham Young University has been used to simulate combustion of the pulverized coal. This paper represents part of a project to investigate simultaneously enhancing sulfur capture and particulate agglomeration in combustor effluents. Results from the code have been compared to experimental data obtained from MTCI's (Manufacturing Technology and Conversion International) test pulse combustor which generates sound pressure levels of -180 dB. The overall goal behind the pulse combustor program at MTCI is to develop combustors for stationary gas turbines which use relatively inexpensive coal-based fuels. This study attempts to model the capture of sulfur dioxide when injected into a pulse combustor firing micronized coal. While this work does not presume to model the complex gas flow-field generated by the pulsating flow, the effects of the acoustic field are expressed by increased heat and mass transfer to the particles (coal/sorbent) in question. A comprehensive calcination-sintering-sulfation model for single particles was used to model the capture of sulfur dioxide by limestone sorbent. Processes controlling sulfation are external heat and mass transfer, pore diffusion, diffusion through the product layer of CaSO4, sintering and calcination. The model was incorporated into the PCGC-2 program. Comparisons of exit concentrations of SO2 showed a fairly good agreement (within-10%) with the experimental results from MTCI.

Original languageEnglish (US)
Title of host publicationCoal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
ISBN (Electronic)9780791878743
DOIs
StatePublished - 1996
EventASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1996 - Birmingham, United Kingdom
Duration: Jun 10 1996Jun 13 1996

Publication series

NameASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1996
Volume3

Other

OtherASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1996
Country/TerritoryUnited Kingdom
CityBirmingham
Period6/10/966/13/96

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Fuel Technology
  • Nuclear Energy and Engineering
  • Aerospace Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Modeling sulfur dioxide capture in a pulverized coal combustor'. Together they form a unique fingerprint.

Cite this