TY - GEN
T1 - Modeling the transport phenomena in moving 3-D dual-beam laser keyhole welding
AU - Zhou, J.
AU - Tsai, H. L.
AU - Wang, P. C.
PY - 2005
Y1 - 2005
N2 - Research and Development Center General Motors Corporation, Warren, M1 48090, USA In recent years, laser-beam welding using two laser beams, or dual-beam laser welding, has become an emerging welding technique. Previous studies have demonstrated that it can provide benefits over conventional single-beam laser welding, such as increasing keyhole stability, slowing down cooling rate and delaying the humping onset to a higher welding speed. It is reported that the dual beam laser welding can significantly improve weld quality. However, so far the development of the dual-beam laser welding technique has been limited to the trialand-error procedure. In this study, the objective is to develop mathematical models and the associated numerical techniques to investigate the transport phenomena, such as heat transfer, metal flow, keyhole formation and weld pool shape evolutions during the moving three-dimensional dual-beam laser keyhole welding. Detailed studies have been conducted to determine the effects of key parameters, such as laser-beam configuration on weld pool fluid flow, weld shape, and keyhole dynamics. Some experimentally observed phenomena, such as the changes of the weld pool shape from oval to circle and from circle to oval during the welding process are predicted and can be well explained by the present model.
AB - Research and Development Center General Motors Corporation, Warren, M1 48090, USA In recent years, laser-beam welding using two laser beams, or dual-beam laser welding, has become an emerging welding technique. Previous studies have demonstrated that it can provide benefits over conventional single-beam laser welding, such as increasing keyhole stability, slowing down cooling rate and delaying the humping onset to a higher welding speed. It is reported that the dual beam laser welding can significantly improve weld quality. However, so far the development of the dual-beam laser welding technique has been limited to the trialand-error procedure. In this study, the objective is to develop mathematical models and the associated numerical techniques to investigate the transport phenomena, such as heat transfer, metal flow, keyhole formation and weld pool shape evolutions during the moving three-dimensional dual-beam laser keyhole welding. Detailed studies have been conducted to determine the effects of key parameters, such as laser-beam configuration on weld pool fluid flow, weld shape, and keyhole dynamics. Some experimentally observed phenomena, such as the changes of the weld pool shape from oval to circle and from circle to oval during the welding process are predicted and can be well explained by the present model.
UR - http://www.scopus.com/inward/record.url?scp=29644441708&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=29644441708&partnerID=8YFLogxK
U2 - 10.1115/HT2005-72201
DO - 10.1115/HT2005-72201
M3 - Conference contribution
AN - SCOPUS:29644441708
SN - 0791847314
SN - 9780791847312
T3 - Proceedings of the ASME Summer Heat Transfer Conference
SP - 263
EP - 270
BT - Proceedings of the ASME Summer Heat Transfer Conference, HT 2005
T2 - 2005 ASME Summer Heat Transfer Conference, HT 2005
Y2 - 17 July 2005 through 22 July 2005
ER -