TY - GEN
T1 - Modeling three-dimensional complex flow-fields of proton exchange membrane fuel cells with large gas density change in cathode
AU - Kim, Jinyong
AU - Wang, Chao Yang
N1 - Publisher Copyright:
Copyright © 2018 ASME.
PY - 2018
Y1 - 2018
N2 - Three-dimensional (3D) complex flow-fields of proton exchange membrane (PEM) fuel cells have attracted much attention owing to their excellent liquid water management and mass transport. However, due to their complex flow structure, PEMFCs with 3D complex flow-fields suffer from large pressure drops (> 0.1 bar) and hence large density variations along the flow direction, especially at high current density operations. In this work, the effect of gas density variation due to the frictional pressure loss is considered in the current three-dimensional computational model using the multi-phase mixture (M 2 ) formulation, in order to elucidate the effect of frictional loss on cell performance. The current work shows that the gas density drop in flow-fields can be significant at high current densities (20% at 3.0 A cm -2 and 30% at 4.0 A cm -2 ) and causes gas flow expansion, resulting in better liquid water management in flow-fields and gas diffusion layers (GDL) due to the gradually increasing gaseous viscous force along the flow direction. However, it is also pointed out that the gas density drop in cathode flow-fields results in cell performance loss due to lower oxygen concentrations (15mV voltage loss at 0.5 bar pressure drop, 60mV voltage loss at 0.78 bar pressure drop).
AB - Three-dimensional (3D) complex flow-fields of proton exchange membrane (PEM) fuel cells have attracted much attention owing to their excellent liquid water management and mass transport. However, due to their complex flow structure, PEMFCs with 3D complex flow-fields suffer from large pressure drops (> 0.1 bar) and hence large density variations along the flow direction, especially at high current density operations. In this work, the effect of gas density variation due to the frictional pressure loss is considered in the current three-dimensional computational model using the multi-phase mixture (M 2 ) formulation, in order to elucidate the effect of frictional loss on cell performance. The current work shows that the gas density drop in flow-fields can be significant at high current densities (20% at 3.0 A cm -2 and 30% at 4.0 A cm -2 ) and causes gas flow expansion, resulting in better liquid water management in flow-fields and gas diffusion layers (GDL) due to the gradually increasing gaseous viscous force along the flow direction. However, it is also pointed out that the gas density drop in cathode flow-fields results in cell performance loss due to lower oxygen concentrations (15mV voltage loss at 0.5 bar pressure drop, 60mV voltage loss at 0.78 bar pressure drop).
UR - http://www.scopus.com/inward/record.url?scp=85063783279&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063783279&partnerID=8YFLogxK
U2 - 10.1115/IMECE2018-88388
DO - 10.1115/IMECE2018-88388
M3 - Conference contribution
AN - SCOPUS:85063783279
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Energy
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
Y2 - 9 November 2018 through 15 November 2018
ER -