TY - GEN
T1 - Modelling axisymmetric centrifugal compressor characteristics from first principles
AU - Powers, Katherine H.
AU - Brace, Chris J.
AU - Budd, Chris J.
AU - Copeland, Colin D.
AU - Milewski, Paul A.
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - Turbochargers are a vital component for aiding engine manufacturers in meeting the latest emissions standards. However, their range of operation is limited for low mass flows by compressor surge. Operation in surge results in pressure and mass flow oscillations that are often damaging to the compressor and its installation. Since surge is a highly complex flow regime, full unsteady 3D models are generally too computationally expensive to run. The majority of current low-dimensional surge models use a cubic compressor characteristic that needs to be fitted to experimental data. Therefore, each time a compressor is studied using these models, costly experimental testing is required. In this paper, a new technique for obtaining an axisymmetric centrifugal compressor characteristic is presented. This characteristic is built using the equations of mass, momentum and energy from first principles in order to provide a more complete model than those currently obtained via experimental data. This approach enables us to explain the resulting cubic-like shape of the characteristic and hence to identify impeller inlet stall as a route into surge. The characteristic is used within a quasi-steady, map-based surge model in order to demonstrate its ability to predict the onset of surge while only providing geometric data as input. Validation is provided for this model by discussion of the qualitative flow dynamics and a good fit to experimental data, especially for low impeller speeds and pressure ratios.
AB - Turbochargers are a vital component for aiding engine manufacturers in meeting the latest emissions standards. However, their range of operation is limited for low mass flows by compressor surge. Operation in surge results in pressure and mass flow oscillations that are often damaging to the compressor and its installation. Since surge is a highly complex flow regime, full unsteady 3D models are generally too computationally expensive to run. The majority of current low-dimensional surge models use a cubic compressor characteristic that needs to be fitted to experimental data. Therefore, each time a compressor is studied using these models, costly experimental testing is required. In this paper, a new technique for obtaining an axisymmetric centrifugal compressor characteristic is presented. This characteristic is built using the equations of mass, momentum and energy from first principles in order to provide a more complete model than those currently obtained via experimental data. This approach enables us to explain the resulting cubic-like shape of the characteristic and hence to identify impeller inlet stall as a route into surge. The characteristic is used within a quasi-steady, map-based surge model in order to demonstrate its ability to predict the onset of surge while only providing geometric data as input. Validation is provided for this model by discussion of the qualitative flow dynamics and a good fit to experimental data, especially for low impeller speeds and pressure ratios.
UR - http://www.scopus.com/inward/record.url?scp=85075558879&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075558879&partnerID=8YFLogxK
U2 - 10.1115/GT2019-90091
DO - 10.1115/GT2019-90091
M3 - Conference contribution
AN - SCOPUS:85075558879
T3 - Proceedings of the ASME Turbo Expo
BT - Turbomachinery
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Y2 - 17 June 2019 through 21 June 2019
ER -