TY - JOUR
T1 - Modelling cardiac mechanics in doxorubicin-induced cardiotoxicity following childhood acute lymphoblastic leukemia using a combination of cardiac magnetic resonance imaging, cardiopulmonary exercise testing and the CircAdapt model
AU - Artz, Tanguy
AU - Caru, Maxime
AU - Curnier, Daniel
AU - Abasq, Maxence
AU - Krajinovic, Maja
AU - Laverdière, Caroline
AU - Sinnett, Daniel
AU - Périé, Delphine
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/6
Y1 - 2023/6
N2 - Children with acute lymphoblastic leukemia (ALL) are treated with doxorubicin-based chemotherapy that can lead to cardiotoxicity which is a well-known cause of mortality. This study aims to characterize myocardial subtle changes induced by doxorubicin-related cardiotoxicity. We used the combination of cardiac magnetic resonance (CMR) imaging, cardiopulmonary exercise testing and the CircAdapt model to explore hemodynamics and intraventricular mechanisms at rest and during exercise in 53 childhood ALL survivors. A sensitivity analysis of the CircAdapt model identified the most influencing parameters on the left ventricle volume. ANOVA were performed to explore significant differences between left ventricle stiffness, contractility, and arteriovenous pressure drop, as well as survivors’ prognostic risk groups. No significant differences were observed between prognostic risk groups. The left ventricle stiffness and left ventricle contractility were non-significantly higher in survivors receiving cardioprotective agents (94.3 %), compared to those at standard and high prognostic risk (77 % and 86 %, respectively). In both left ventricle stiffness and left ventricle contractility, we observed that survivors receiving cardioprotective agents were close to the nominal value of CircAdapt (healthy reference group value is 100 %). This study allowed to improve our knowledge of potential subtle myocardial changes induced by doxorubicin-related cardiotoxicity in childhood ALL survivors. This study confirms that survivors exposed to a high cumulative dose of doxorubicin during treatments are at potential risk of myocardial changes many years after the end of their cancer, while cardio-protective agents may prevent changes in cardiac mechanical properties.
AB - Children with acute lymphoblastic leukemia (ALL) are treated with doxorubicin-based chemotherapy that can lead to cardiotoxicity which is a well-known cause of mortality. This study aims to characterize myocardial subtle changes induced by doxorubicin-related cardiotoxicity. We used the combination of cardiac magnetic resonance (CMR) imaging, cardiopulmonary exercise testing and the CircAdapt model to explore hemodynamics and intraventricular mechanisms at rest and during exercise in 53 childhood ALL survivors. A sensitivity analysis of the CircAdapt model identified the most influencing parameters on the left ventricle volume. ANOVA were performed to explore significant differences between left ventricle stiffness, contractility, and arteriovenous pressure drop, as well as survivors’ prognostic risk groups. No significant differences were observed between prognostic risk groups. The left ventricle stiffness and left ventricle contractility were non-significantly higher in survivors receiving cardioprotective agents (94.3 %), compared to those at standard and high prognostic risk (77 % and 86 %, respectively). In both left ventricle stiffness and left ventricle contractility, we observed that survivors receiving cardioprotective agents were close to the nominal value of CircAdapt (healthy reference group value is 100 %). This study allowed to improve our knowledge of potential subtle myocardial changes induced by doxorubicin-related cardiotoxicity in childhood ALL survivors. This study confirms that survivors exposed to a high cumulative dose of doxorubicin during treatments are at potential risk of myocardial changes many years after the end of their cancer, while cardio-protective agents may prevent changes in cardiac mechanical properties.
UR - http://www.scopus.com/inward/record.url?scp=85159265921&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85159265921&partnerID=8YFLogxK
U2 - 10.1016/j.jbiomech.2023.111616
DO - 10.1016/j.jbiomech.2023.111616
M3 - Article
C2 - 37207545
AN - SCOPUS:85159265921
SN - 0021-9290
VL - 154
JO - Journal of Biomechanics
JF - Journal of Biomechanics
M1 - 111616
ER -