TY - JOUR
T1 - Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses
AU - Boni, Maciej F.
AU - Manh, Bui H.
AU - Thai, Pham Q.
AU - Farrar, Jeremy
AU - Hien, Tran T.
AU - Hien, Nguyen T.
AU - Van Kinh, Nguyen
AU - Horby, Peter
N1 - Funding Information:
We are grateful to the Ministry of Health of the Socialist Republic of Vietnam for their continued support for our work and to the staff of the National Institute for Infectious and Tropical Diseases, the National Institute of Hygiene and Epidemiology, and the Hospital for Tropical Diseases for their dedication to high quality research into infectious diseases in Vietnam. This work was supported by the Wellcome Trust UK (grants 081613/ Z/06/Z and 077078/Z/05/Z) and the South East Asia Infectious Disease Clinical Research Network (N01-A0-50042). Model simulations were run at the computing facilities of the Wellcome Trust Sanger Institute. We also thank Ms Ho Thi Nhan for gathering the domestic flight information for Vietnam. MFB is funded by a UK Medical Research Council grant G0600718 to Dominic Kwiatkowski.
PY - 2009/9/3
Y1 - 2009/9/3
N2 - Background: A novel variant of influenza A (H1N1) is causing a pandemic and, although the illness is usually mild, there are concerns that its virulence could change through reassortment with other influenza viruses. This is of greater concern in parts of Southeast Asia, where the population density is high, influenza is less seasonal, human-animal contact is common and avian influenza is still endemic. Methods: We developed an age- and spatially-structured mathematical model in order to estimate the potential impact of pandemic H1N1 in Vietnam and the opportunities for reassortment with animal influenza viruses. The model tracks human infection among domestic animal owners and non-owners and also estimates the numbers of animals may be exposed to infected humans. Results: In the absence of effective interventions, the model predicts that the introduction of pandemic H1N1 will result in an epidemic that spreads to half of Vietnam's provinces within 57 days (interquartile range (IQR): 45-86.5) and peaks 81 days after introduction (IQR: 62.5-121 days). For the current published range of the 2009 H1N1 influenza's basic reproductive number (1.2-3.1), we estimate a median of 410,000 cases among swine owners (IQR: 220,000-670,000) with 460,000 exposed swine (IQR: 260,000-740,000), 350,000 cases among chicken owners (IQR: 170,000-630,000) with 3.7 million exposed chickens (IQR: 1.9 M-6.4 M), and 51,000 cases among duck owners (IQR: 24,000 - 96,000), with 1.2 million exposed ducks (IQR: 0.6 M-2.1 M). The median number of overall human infections in Vietnam for this range of the basic reproductive number is 6.4 million (IQR: 4.4 M-8.0 M). Conclusion: It is likely that, in the absence of effective interventions, the introduction of a novel H1N1 into a densely populated country such as Vietnam will result in a widespread epidemic. A large epidemic in a country with intense human-animal interaction and continued co-circulation of other seasonal and avian viruses would provide substantial opportunities for H1N1 to acquire new genes.
AB - Background: A novel variant of influenza A (H1N1) is causing a pandemic and, although the illness is usually mild, there are concerns that its virulence could change through reassortment with other influenza viruses. This is of greater concern in parts of Southeast Asia, where the population density is high, influenza is less seasonal, human-animal contact is common and avian influenza is still endemic. Methods: We developed an age- and spatially-structured mathematical model in order to estimate the potential impact of pandemic H1N1 in Vietnam and the opportunities for reassortment with animal influenza viruses. The model tracks human infection among domestic animal owners and non-owners and also estimates the numbers of animals may be exposed to infected humans. Results: In the absence of effective interventions, the model predicts that the introduction of pandemic H1N1 will result in an epidemic that spreads to half of Vietnam's provinces within 57 days (interquartile range (IQR): 45-86.5) and peaks 81 days after introduction (IQR: 62.5-121 days). For the current published range of the 2009 H1N1 influenza's basic reproductive number (1.2-3.1), we estimate a median of 410,000 cases among swine owners (IQR: 220,000-670,000) with 460,000 exposed swine (IQR: 260,000-740,000), 350,000 cases among chicken owners (IQR: 170,000-630,000) with 3.7 million exposed chickens (IQR: 1.9 M-6.4 M), and 51,000 cases among duck owners (IQR: 24,000 - 96,000), with 1.2 million exposed ducks (IQR: 0.6 M-2.1 M). The median number of overall human infections in Vietnam for this range of the basic reproductive number is 6.4 million (IQR: 4.4 M-8.0 M). Conclusion: It is likely that, in the absence of effective interventions, the introduction of a novel H1N1 into a densely populated country such as Vietnam will result in a widespread epidemic. A large epidemic in a country with intense human-animal interaction and continued co-circulation of other seasonal and avian viruses would provide substantial opportunities for H1N1 to acquire new genes.
UR - http://www.scopus.com/inward/record.url?scp=70350706218&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350706218&partnerID=8YFLogxK
U2 - 10.1186/1741-7015-7-43
DO - 10.1186/1741-7015-7-43
M3 - Article
C2 - 19728864
AN - SCOPUS:70350706218
SN - 1741-7015
VL - 7
SP - 43
JO - BMC Medicine
JF - BMC Medicine
M1 - 43
ER -