TY - JOUR
T1 - Modulation of calcium channels in human erythroblasts by erythropoietin
AU - Cheung, Joseph Y.
AU - Zhang, Xue Qian
AU - Bokvist, Krister
AU - Tillotson, Douglas L.
AU - Miller, Barbara A.
PY - 1997/1/1
Y1 - 1997/1/1
N2 - Erythropoietin (Epo) induces a dose-dependent increase in intracellular free Ca2+ ([Ca2+](i)) in human erythroblasts, which is dependent on extracellular Ca2+ and blocked by high doses of nifedipine or Ni2+. In addition, pretreatment of human erythroblasts with mouse antihuman erythropoietin receptor antibody but not mouse immunopure IgG blocked the Epo-induced [Ca2+], increase, indicating the specificity of the Ca2+ response to Epo stimulation. In this study, the erythropoietin-regulated calcium channel was identified by single channel recordings. Use of conventional whole cell patch-clamp failed to detect Epo-induced whole cell Ca2+ current. To minimize washout of cytosolic constituents, we next used nystatin perforated patch, but did not find any Epo-induced whole cell Ca2+ current. Using Ba2+ (30 mmol/L) as charge carrier in cell-attached patches, we detected single channels with unitary conductance of 3.2 pS, reversal potential of +72 mV, and whose unitary current (at +10 mV) increased monotonically with increasing Ba2+ concentrations. Channel open probability did not appreciably change over the voltage range (-50 to +30 mV) tested. Epo (2 U/mL) increased both mean open time (from 4.27 ± 0.75 to 11.15 ± 1.80 ms) and open probability (from 0.26 ± 0.06 to 2.56 ± 0.59%) of this Ba2+permeable channel. Our data strongly support the conclusion that the Epo-induced [Ca2+](i) increase in human erythroblasts is mediated via Ca2+ entry through a voltage-independent Ca2+ channel.
AB - Erythropoietin (Epo) induces a dose-dependent increase in intracellular free Ca2+ ([Ca2+](i)) in human erythroblasts, which is dependent on extracellular Ca2+ and blocked by high doses of nifedipine or Ni2+. In addition, pretreatment of human erythroblasts with mouse antihuman erythropoietin receptor antibody but not mouse immunopure IgG blocked the Epo-induced [Ca2+], increase, indicating the specificity of the Ca2+ response to Epo stimulation. In this study, the erythropoietin-regulated calcium channel was identified by single channel recordings. Use of conventional whole cell patch-clamp failed to detect Epo-induced whole cell Ca2+ current. To minimize washout of cytosolic constituents, we next used nystatin perforated patch, but did not find any Epo-induced whole cell Ca2+ current. Using Ba2+ (30 mmol/L) as charge carrier in cell-attached patches, we detected single channels with unitary conductance of 3.2 pS, reversal potential of +72 mV, and whose unitary current (at +10 mV) increased monotonically with increasing Ba2+ concentrations. Channel open probability did not appreciably change over the voltage range (-50 to +30 mV) tested. Epo (2 U/mL) increased both mean open time (from 4.27 ± 0.75 to 11.15 ± 1.80 ms) and open probability (from 0.26 ± 0.06 to 2.56 ± 0.59%) of this Ba2+permeable channel. Our data strongly support the conclusion that the Epo-induced [Ca2+](i) increase in human erythroblasts is mediated via Ca2+ entry through a voltage-independent Ca2+ channel.
UR - http://www.scopus.com/inward/record.url?scp=0031017844&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031017844&partnerID=8YFLogxK
U2 - 10.1182/blood.v89.1.92.92_92_100
DO - 10.1182/blood.v89.1.92.92_92_100
M3 - Article
C2 - 8978281
AN - SCOPUS:0031017844
SN - 0006-4971
VL - 89
SP - 92
EP - 100
JO - Blood
JF - Blood
IS - 1
ER -