TY - JOUR
T1 - Modulation of cortical activity as a result of voluntary postural sway direction
T2 - An EEG study
AU - Slobounov, Semyon
AU - Hallett, Mark
AU - Cao, Cheng
AU - Newell, Karl
N1 - Funding Information:
This research was supported in part by NIH grant R01NS056227-01A2 and the NINDS Intramural Program. We thank Alessander Danna dos Santos for his help in postural data collection and preliminary analysis.
PY - 2008/9/19
Y1 - 2008/9/19
N2 - There is increasing evidence demonstrating the role of the cerebral cortex in human postural control. Modulation of EEG both in voltage and frequency domains has been observed preceding and following self-paced postural movements and those induced by external perturbations. The current study set out to provide additional evidence regarding the role of cerebral cortex in human postural control by specifically examining modulation of EEG as a function of postural sway direction. Twelve neurologically normal subjects were instructed to produce self-paced voluntary postural sways in the anterior-posterior (AP) and medial-lateral (ML) directions. The center of pressure dynamics and EEG both in voltage and frequency domains were extracted by averaging and Morlet wavelet techniques, respectively. The amplitude of movement-related cortical potentials (MRCP) was significantly higher preceding ML sways. Also, time-frequency wavelet coefficients (TF) indicated differential modulation of EEG within alpha, beta and gamma bands as a function of voluntary postural sway direction. Thus, ML sway appear to be more difficult and energy demanding tasks than the AP sway as reflected in differential modulation of EEG. These results are discussed within the conceptual framework of differential patterns of brain activation as a result of postural task complexity.
AB - There is increasing evidence demonstrating the role of the cerebral cortex in human postural control. Modulation of EEG both in voltage and frequency domains has been observed preceding and following self-paced postural movements and those induced by external perturbations. The current study set out to provide additional evidence regarding the role of cerebral cortex in human postural control by specifically examining modulation of EEG as a function of postural sway direction. Twelve neurologically normal subjects were instructed to produce self-paced voluntary postural sways in the anterior-posterior (AP) and medial-lateral (ML) directions. The center of pressure dynamics and EEG both in voltage and frequency domains were extracted by averaging and Morlet wavelet techniques, respectively. The amplitude of movement-related cortical potentials (MRCP) was significantly higher preceding ML sways. Also, time-frequency wavelet coefficients (TF) indicated differential modulation of EEG within alpha, beta and gamma bands as a function of voluntary postural sway direction. Thus, ML sway appear to be more difficult and energy demanding tasks than the AP sway as reflected in differential modulation of EEG. These results are discussed within the conceptual framework of differential patterns of brain activation as a result of postural task complexity.
UR - http://www.scopus.com/inward/record.url?scp=48749092879&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=48749092879&partnerID=8YFLogxK
U2 - 10.1016/j.neulet.2008.07.021
DO - 10.1016/j.neulet.2008.07.021
M3 - Article
C2 - 18639613
AN - SCOPUS:48749092879
SN - 0304-3940
VL - 442
SP - 309
EP - 313
JO - Neuroscience letters
JF - Neuroscience letters
IS - 3
ER -